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 In this article, NB1-Ball polynomials method for solving first and 

second orderordinary differential equation is proposed. Dealing with 

nonlinear and linear equations generated through matrix operation by 

simple form is the advantage of the suggested method. In order to 

show the performance of the proposed method, some real-life 

problems which include linear and nonlinear form of first and second 

order ordinary differential equations are introduced. The generated 

results confirm that the developed method outperform the existing 

method in terms of error. 
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  الخلاصة 

متعددة الحدود لحل المعادلة التفاضلية العادية من الرتبتين الأولى والثانية. يعتبر التعامل    NB1-Ballفي هذه المقالة ، تم اقتراح طريقة       

  مع المعادلات الخطية وغير الخطية الناتجة عن عملية المصفوفة بشكل بسيط ميزة الطريقة المقترحة. من أجل إظهار أداء الطريقة المقترحة 

تشمل الشكل الخطي وغير الخطي للمعادلات التفاضلية العادية من الدرجة الأولى والثانية. تؤكد    ، تم تقديم بعض مشاكل الحياة الواقعية التي

 النتائج المتولدة أن الطريقة التي تم تطويرها تتفوق على الطريقة الحالية من حيث الخطأ.

 

 

1. INTRODUCTION 

               In this paper, we will present an efficient method for computing the numerical solution of differential 

equations (DEs). Problems of the type (9) and (10) have been considered by a vast number of scientific research 

fields, spanning from the chemical to the physical sciences and their applications to geophysics, reaction 

diffusion processes, and gas equilibrium, amongst a great number of other topics. As a result of the broad range 

of applications for problems of the kind under discussion, it is preferable to find a precise or approximate 

solution for the problem, which has been investigated by a large number of researchers. Nasab and Kilicman 

[1] used the wavelet analysis approach in order to solve linear and nonlinear initial (boundary) value problems. 

The Legendre operational matrix was used by Bataineh and Ishak Hashim [2] in order to come up with an 

approximation of the solution to two-point point boundary value issues. Bhatti [3] made use of the well-known 

Bernstein polynomial basis in order to find an approximate solution to the differential equation. Youseffi 

provided an approximate solution to the Bessel differential equation, and Yuzbasi also solved the fractional 

riccati type (DEs) [5], following the work of Bhatti, Pandey, and Kumar [4] and Isik and Sezer, who were able 

to get an analytic solution to the Lane-Emden type equations. In a recent paper, Yiming Chen used Bernstein 

polynomials in a similar way to turn up at the numerical solution to the variable order linear cable equation [6]. 

Rostamy also used a similar strategy to solve the backward inverse heat conduction problems [7], but he 

employed a modified operational matrix approach. Similar to the previous article, This paper likewise adopted 

the use of the NB1-Ball operational matrix to find solutions to issues involving linear and nonlinear starting 

(boundary) values. From the numerical answers produced, it is evident that there is commendable precision 

and reduced computing weight, as compared to the precise solution within a range of no more than 10 digits, 

just a few NB1-Ball polynomial basis functions are needed to get this approximative solution.  This article is 

organised as follows: Section 2 discusses a review of Ball polynomials and NB1-Ball polynomials, as well as 

the conventional derivation of NB1-Ball polynomials and the differentiation of its operational matrix, while 
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Section 3 discusses applications of the operational matrix of the derivative. The numerical results are presented 

in Section 4, together with the precise solution, and the operational matrices validity, precision, and application 

are ultimately justified. Section 5 offers a succinct overview and conclusion. 
 

 

2. REVIEW ON BALL POLYNOMIAL 

The Ball polynomial was declared by A. A. Ball in his well-known aircraft design system CONSURF 

in [1]. It is described as a cubic polynomial and explained mathematically as: 

 

                                  (1 − 𝑧)2, 2𝑧(1 − 𝑧)2, 2𝑧2(1 − 𝑧), 𝑧2,  0 ≤ 𝑧 ≤ 1.                                        (1) 

In further research, several studies have discussed about Ball polynomial’s high generalization and its 

properties. For instance, in the 1980s there were two different Ball polynomials of arbitrary degree are called 

Said-Ball and Wang-Ball  [2, 3] and in 2003 there was another generalization of Ball polynomial called DP-

Ball [4]. 

 

2.1. Nb1-Ball Polynomial Representation 

Definition: 

For any integer 𝑛 ≥  3, the NB1 basis of degree 𝑛 is defined as [5]  
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Definition: 
The NB1 basis function can be formulated in power basis form by [5]  

                                           𝒞𝑛(𝑧) = ∑ ∑ 𝑏𝑖𝑗
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Definition 

The monomial matrix form for NB1-Ball can be specified as [6]  

                                                                   𝒩 = [

𝑔00 𝑔01 ⋯ 𝑔0𝑛
𝑔10 𝑔11 ⋯ 𝑔1𝑛
⋮ ⋮ ⋮ ⋮
𝑔𝑛0 𝑔𝑛1 ⋯ 𝑔𝑛𝑛

]

(𝑛+1)×(𝑛+1)

                                                       (5) 
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where 𝑔𝑖𝑗 ,  𝑖, 𝑗 = 0,1,⋯ , 𝑛 are given as (2). 

In general, we approximate any function u(t) with the first m+1 NB1-Ball polynomials as: 

                                            𝑦(𝑧) ≈ ∑ 𝑐𝑖
𝑚
𝑖=0 𝒩𝑖

𝑚(𝑧) = 𝐶𝑇𝜙(𝑧) = 𝐶𝑇𝒩𝑇(𝑧).                                                  (6) 

where 𝐶𝑇 = [𝑐0 𝑐1 𝑐2⋯𝑐𝑚], 𝐻(𝑧) = [1 z z
2⋯𝑧𝑚]𝑇 and  𝒩 is the monomial matrix form was given in (5). 

The operational matrix of derivative of the NB1- Ball polynomials set 𝜓(𝑧) is given by  
𝑑𝜓(𝑧)

𝑑𝑧
= 𝐷′(1)𝜓(𝑧) is the 𝑚+ 1by 𝑚+ 1operational matrix of derivative define  as 

                                                             𝐷′(1) = 𝒩𝛬𝒩−1                                                           (7) 

where 𝒩is NB1-Ball monomial matrix form given in (5), and 

                                                           𝛬 =

[
 
 
 
 
0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 𝑚 0]

 
 
 
 

                                                           (8) 

We can generalized Equation (8) as 

𝐷′(𝑛)𝜓(𝑧) = 𝐷′(𝑛−1)(𝐷′(1)𝜓(𝑧)) = ⋯ = (𝐷′(1))𝑛𝜓(𝑧) = 𝐷′(𝑛)𝜓(𝑧),𝑚 = 1,2, … 

 

 

3. Applications of the Operational Matrix of Derivative 

 

We present in this section the derivation of the method for solving differential equation of the form 

                                 𝑞0(𝑧)𝑢
″(𝑧) + 𝑞1(𝑧)𝑢

′(𝑧) + 𝑞2(𝑧)(𝑢(𝑧))
𝑛 = 𝑔(𝑧)                                                  (9) 

with initial  conditions (ICs) or boundary conditions (BCs) 

                                             {
𝑢(0) = 1, 𝑦′(0) = 0,  or

𝑢(0) = 𝛼1, 𝑢(1) = 𝛼2.
                                                                   (10) 

where 𝑞𝑗(𝑧),  𝑗 = 0,1,2 and 𝑔(𝑡) are given, while 𝑢(𝑧) is unknown. We can write the residual ℜ𝑛(𝑧) 

as 

                                     
ℜ(𝑧) = 𝑞0(𝑧)𝐶

𝑇𝐷′(2)𝜓(𝑧) + 𝑞1(𝑡)𝐶
𝑇𝐷′(1)𝜓(𝑧)

+𝑞2(𝑧)(𝐶
𝑇𝜓(𝑧))𝑛 − 𝐺𝑇𝜓(𝑧)

                                         (11) 

where  𝐺𝑇 = [𝑔0, 𝑔1, ⋯ , 𝑔𝑚], To find the solution of 𝑢(𝑧) given in (10), we first collocate (12) at 𝑚 − 1  

points. For suitable collection points, we use  

                                      𝑧𝑖 =
1

2
+

1

2
𝑐𝑜𝑠 (

(2𝑖+1)𝜋

𝑛
)  , 𝑖 = 0,1,⋯ ,𝑚 − 1.                                                 (12) 

Theses equations together with (11) generate 𝑚 + 1 nonlinear equations which can be solved using 

Newton's iteration method. Consequently, 𝑢(𝑧) can be calculated. 

 

4. NUMERICAL EXAMPLES 

4.1. Example. 1 

At the first we consider the example given in [6]  

                                𝑢″(𝑧) +
1

𝑧
𝑢′(𝑧) + 𝑢(𝑧) = 4 − 9𝑧 + 𝑧2 − 𝑧3,                                                         (13) 

with BCs 

                                                      𝑢(0) = 0 𝑢(1) = 0.                                                                 (14) 

Which has the exact solution is 𝑢(𝑧) = 𝑧2 − 𝑧3. 
To solve (13) and (14) we use our purposed method with 𝑚 = 3. we apply (8) we have, 

                               𝐷′(1) = [

−2 −1 −1 0
2 −2 −2 0
0 2 2 −2
0 1 1 2

] , 𝐷′(2) = [

2 2 2 2
−8 −2 −2 4
4 −2 −2 −8
2 2 2 2

].                         (15) 

Therefore, using (13) for (14), we obtain 
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                                                         −
55

64
𝑐0 −

103

128
𝑐1 +

115

128
𝑐2 +

65

64
𝑐3 −

115

256
                                                   (16) 

                                                            
67

64
𝑐0 +

25

128
𝑐1 −

501

128
𝑐2 +

219

64
𝑐3 +

501

256
                                                  (17) 

Now we use the (BCs) we have 

                                                                          𝑐0 = 0,  𝑐3 = 0.                                                                  (18) 

Solve Equations (17), (18) and (19) we get 𝑐0 = 0,  𝑐1 = 0,  𝑐2 =
1

2
 and 𝑐3 = 0. Thus 

[𝑢3(𝑧)] = 𝑐0𝒩0
3(𝑧) + 𝑐1𝒩1

3(𝑧) + 𝑐2𝒩2
3(𝑧) + 𝑐3𝒩3

3(𝑧) 

             = [0 0
1

2
0]

[
 
 
 
(𝑧 − 1)2

2𝑧(𝑧 − 1)2

−2𝑧2(𝑧 − 1)

𝑧2 ]
 
 
 

 

             = [𝑧2 − 𝑧3]. 

Which is the exact solution. 

4.2.  Example. 2 

       Consider the Bessel differential equation of order zero given in [7-10]  

                                                   𝑧𝑢′′(𝑧) + 𝑢′(𝑧) + 𝑧𝑢(𝑧) = 0,                                                                      (19) 

with the ICs 

                                                                      𝑢(0) = 1,  𝑢′(0) = 0.                                                            (20) 

The exact solution of this example is 

                                                                      𝐽0(𝑧) = ∑
(−1)𝑞

(𝑞!)2
∞
𝑞=0 (

𝑧

2
)
2𝑞

.                                                         (21) 

Here we see that 𝑔(𝑡) = 0 By the suggest method, we obtain the proximate  solution when 𝑚 = 12 is 

𝑢12 = 1.0 − 0.24999969𝑡
2 − 0.00000712𝑡3 + 0.0156966𝑡4 − 0.0004143𝑡5 + 0.0010672128𝑡6 

−0.003570235𝑡7 + 0.00565212𝑡8 − 0.00588660𝑡9 + 0.0038875𝑡10 − 0.001473𝑡11 + 0.0002435𝑡12. 

The numerical results of our scheme together with two other [8, 9] are provided in Table 1 

Table 1 Errors of the present method compared with results in ref [8, 9] for the Example 2. 
t PM 

m=12 

Method of [9]  

for k=2, m=3, 

Method of [8]  

for k=2, m=3 

0.2 0 9.36e-05 6.01e-05 

0.4 7.50e-11 2.78e-05 1.636e-04 

0.6 3.24e-10 3.60e-05 1.636e-04 
0.8 6.66e-09 2.695e-04 1.636e-04 

1.0 1.66e-06 2.689e-04 1.636e-04 

 

4.3. Example. 3 
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Consider the following ordinary differential equation [11]  

                                                𝑢″(𝑧) + 𝑧𝑢′(𝑧) + 𝑧2𝑢3(𝑧) = (2 + 6𝑧2)𝑒(𝑧
2) + 𝑧2𝑒(3𝑧

2),                              (22) 

Subject to IC 

                                                                  𝑢(0) = 1, 𝑢′(0) = 0.                                                                    (23) 

with the exact solution 𝑢(𝑡) = 𝑒𝑡
2
. We apply the above method when 𝑚 = 12. Table 2 show the absolute 

error for Example 3. 

 

Table 2 Errors of the present method compared with results in ref [11] for the Example 3. 
t Ref [17] PM 

0.000 0 0 
0.010 0.2000000E-10 0.1683250E-10 

0.020 0.2900000E-09 0.5781250E-10 

0.030 0.2900000 E-09 0.1120996E-09 
0.040 0.4450000 E-08 0.1725064E-09 

0.050 0.1074000 E-07 0.2345360E-09 

0.060 0.2207000 E-07 0.2956183E-09 
0.070 0.4057000 E-07 0.3545185E-09 

0.080 0.6872000 E-07 0.4108806E-09 

0.090 0.1093000 E-06 0.4648881E-09 
0.100 0.1654900 E-06 0.5170152E-09 

 

4.4. Example. 4: 

Consider the ordinary differential equation [11] 

                              𝑢″(𝑧) + 𝑢(𝑧)𝑢′(𝑧) = 𝑡𝑠𝑖𝑛(2𝑧2) − 4𝑧2𝑠𝑖𝑛(𝑧2) + 2𝑐𝑜𝑠(𝑧2), z ∈ [0,1],                          (24) 

with ICs  𝑢(0) = 0, 𝑢′(0) = 0. 
Where the exact solution is  𝑢(𝑧) = 𝑠𝑖𝑛(𝑧2). Table. 3 show the comparison the absolute error of our method 

with ref [11]  

Table 3 Errors of the present method compared with results in ref [11]  for the Example 4 with m = 12 
t Ref [11]  PM 

0.0 0 0 

0.1 3.074560E-7 7.249816E-9 
0.2 1.058636E-5 1.483888E-8 

0.3 5.114716E-5 2.254473E-8 

0.4 1.331415E-4 3.054861E-8 
0.5 2.420463E-4 4.135017E-8 

0.6 3.299021E-4 5.825938E-8 

0.7 3.231831E-4 9.301242E-8 
0.8 1.540876E-4 1.668932E-7 

0.9 1.870564E-4 3.322331E-7 

1.9 6.088701E-4 3.322331E-7 

 

 

4.5. Example. 5: 

Consider the first order ode [11]  

                                                          𝑢′(𝑧) − 𝑧𝑢(𝑧) + 𝑢2(𝑧) = 𝑒𝑧
2
                                                      (25) 

subject to IC  

                                                                  𝑢(0) = 1.                                                                              (26) 

with the exact solution 𝑢(𝑧) = 𝑒
𝑧2

2 . The absolute error of Example .5 is presented in Table 4. 

 

Table 4. Errors of the present method compared with results in ref [11]  for  the Example 5 with 𝑚 = 12. 
t Ref [11]  PM 

0.00 0 0 

0.01 1.750000 E-7 2.610000E-11 

0.02 6.400000 E-7 3.195700E-10 
0.03 1.314000 E-6 5.506400E-10 

0.04 2.123000 E-6 5.936400E-10 
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0.05 2.999000 E-6 4.440000E-10 
0.06 3.883000 E-6 1.595400E-10 

0.07 4.720000 E-6 1.791700E-10 

0.08 5.463000 E-6 4.941400E-10 
0.09 6.069000 E-6 7.240900E-10 

0.1 6.501000 E-6 8.310500E-10 

 

4.6. Example 6: 

Finally Consider the  following  form of a singular  Dirichlet-type  boundary value problem on the interval 

[0, 1] [12]  

                                                       𝑢′′(𝑧) −
1

𝑧
𝑢′(𝑧) +

1

𝑧(1+𝑧)
𝑢(𝑧) = −𝑧3,                                                     (27) 

with BCs 

                                                                     𝑢(0) = 0, 𝑢(1) = 0.                                                                   (28) 

where the exact Solution is  

𝑢(𝑧) =
1

144(−1 + 2𝑙𝑛(2))
(14𝑙𝑛(𝑧 + 1)𝑡 + 14𝑙𝑛(𝑧 + 1) − 14𝑧 + 6𝑧2 − 12𝑧2𝑙𝑛(2) 

         − 2𝑧3 + 4𝑧3𝑙𝑛(2) + 𝑧4−2𝑧4𝑙𝑛(2) + 9𝑧5 − 18𝑧5𝑙𝑛(2)). 
The absolute error in Table. 5 and in Figure. 1 

 

Table 5 Errors of the present method compared with results in ref [12]  for the Example 6 with 11.m =  
t Ref [12]  PM 

0.2 1.88415721000000E–10 1.37812040000000E-10 
0.4 7.13501861405898E–10 1.03644900000000E-10 

0.6 8.20803253396388E–10 5.55406000000000E-11 

0.8 5.53448662985227E–10 3.68906000000000E-11 

 

 
Figure 1. The absolute error for Example 6 

 
 

 

5. CONCLUSION 

 

In this work, the derivation of the new NB1-Ball polynomials method for solving first and second orders 

ODE is carried out. This new approach’s capacity to solve second orders ODE is its most significant 

advantage over those that have been previously proposed. The ability of the method is shown in its 

application to non-linear and linear first and second orders IVP and ICs of ODEs. The generated results 

approve the supremacy of new Said-Ball polynomials method over existing methods in terms of error as 

offered in tables 1-5. 
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