

A numerical scheme for singularly perturbed parabolic convection-diffusion equation using Said-Ball Polynomial

Ahmed Kherd

Faculty of Computer Science & Engineering, Al-Ahgaff University, Mukalla, Yemen.
kherdahmed1@gmail.com

Salim Bamsaoud

Department of Physics, Hadhramout University, Mukalla, Yemen
saalem88@yahoo.com

Article Info

Article history:

Received August 11, 2025

Revised August 20, 2025

Accepted August 29, 2025

Keywords:

Numerical solutions,
Singular perturbation,
Said-Ball Polynomial,
Parabolic convection-diffusion,
Collocation method.

ABSTRACT

This study introduces a numerical approach that converges uniformly for a convection-diffusion problem with singular perturbations. The collocation approach is used, and the derivative gets interpreted in the Caputo sense. Subsequently, a numerical scheme that converges uniformly is formulated using the Said-Ball collocation technique. Then, the primary issue may be simplified to a matrix equation that relates to a set of linear algebraic equations. Following the resolution of this system, the approximation of the provided problem's unknown Said-Ball coefficients is determined. The computational result is verified to be in agreement with the theoretical expectation and to be more precise than certain established numerical methods through numerical experimentation.

Copyright © 2025 Al-Ahgaff University. All rights reserved.

الخلاصة

تقوم هذه الدراسة منهجاً عددياً يقترب بانتظام لمسألة الحمل الحراري والانتشار مع الاضطرابات الشاذة. يستخدم منهج التجميع، ويفسر المشتق وفقاً لمفهوم كابوتو. بعد ذلك، تُصاغ خوارزمية عددية تقترب بانتظام ب باستخدام تقنية التجميع سعيد-بول. ثم، يمكن تبسيط المسألة الأساسية إلى معادلة مصفوفية ترتبط بمجموعة من المعادلات الجبرية الخطية. بعد حل هذا النظام، يتم تحديد تقرير معاملات سعيد-بول المجهولة لمسألة المطروحة. وقد تم التتحقق من صحة النتيجة الحاسوبية من خلال التجارب العددية، حيث تبين أنها تتوافق مع التوقعات النظرية وأنها أكثر دقة من بعض الطرق العددية المعروفة.

1. INTRODUCTION

The second-order one-dimensional parabolic equation, as stated in [1-4], is the primary focus of this work.

$$u_{\tau}(\zeta, \tau) - \varepsilon u_{\zeta\zeta}(\zeta, \tau) + a(\zeta)u_{\zeta}(\zeta, \tau) + b(\zeta)u(\zeta, \tau) = F(\zeta, \tau), 0 \leq \zeta \leq L, 0 \leq \tau \leq T. \quad (1)$$

where $a(\zeta), b(\zeta)$ and $F(\zeta, \tau)$ known real- valued functions and $\varepsilon < 1$ is a known positive perturbation parameter that is generally taken to be close to zero. Equ. (1), known as the one- dimensional singularly perturbed convection-diffusion equation, will be considered under the initial condition (IC)

$$u(\zeta, 0) = g(\zeta), 0 \leq \zeta \leq L. \quad (2)$$

and the boundary conditions (BCs)

$$u(0, \tau) = h_0(\tau), u(L, \tau) = h_1(\tau), 0 \leq \tau \leq T, \quad (3)$$

where g , h_0 and h_1 , as given by the initial and boundary conditions (2) and (3).

Consequently, various authors have developed an interest in acquiring its approximate solutions via the use of diverse numerical approaches. The convection-diffusion-reaction process consists of three distinct stages [5]. During the first stage, there is a transfer of convection and materials across different regions. In the second phase, there is a movement of diffusion and materials from an area with a high concentration to an area with a

low concentration. The last stage is a process where decay, absorption, and the interaction of substances with other components take place.

Modeling difficulties in many scientific domains, including biology, physics, and engineering, may be rather complex due to the one-dimensional parabolic convection-diffusion equation, which is a partial differential equation [6–12]. Therefore, a number of scholars have set out to find numerical solutions to these difficulties by using various numerical techniques:

A Laguerre collocation approach was suggested by Gürbüz in order to resolve the 1D parabolic convection equation in [10]. A matrix-vector equation is transformed in this technique using the provided equation and conditions. Then, by employing collocation points, the Laguerre coefficients are derived from the solution of this matrix-vector equation. Lima et al. introduced a finite difference approach in [13] for both linear and nonlinear convection-diffusion-reaction models in order to get numerical results. The authors primarily concentrate on the examination of convergence, using errors and assessing the accuracy of the procedure. The authors in [14] presented an optimum q-homotopy analysis approach for obtaining an approximate solution to the convection-diffusion problem. Additionally, the convection-diffusion-reaction has been addressed using a number of different approaches, including the following: the homotopy perturbation method [15], the finite element method [16], the Runge Kutta method [17], the Bessel collocation method [2], the weighted finite difference [18], a hybrid approximation scheme [4], and the uniform convergent numerical method [19]. The Said-Ball collocation technique is used in this investigation, where it is the first time to be used to solve singularly perturbed parabolic convection-diffusion equation.

The paper is structured as follows: The already mentioned Said-Ball polynomial is discussed in Section 2. The paper illustrates the numerical scheme in Section 3. Section 4 of the paper provides a detailed explanation of a method called residual correction, which aims to enhance an existing solution. This method can also be utilized to estimate the error of the solution. In Section 5, two numerical examples are examined to exemplify the process of residual correction and to make comparisons with other methods. Section 6 contains the final remarks regarding the paper.

2. Said-Ball polynomials (SBP)

In this section, we will examine how the SBP may be utilized to create the operational matrix used to solve the 2nd order one-dimensional parabolic convection-diffusion equation under consideration. SBP is one of two generalized Ball polynomials (Said-Ball and Wang-Ball) of indeterminate degree established in the '80s [20, 21], both of which have the hallmark property of strong generalization among Ball polynomials. To be more specific, the Ball polynomial was first described in [21, 22], which defines a cubic polynomial as:

$$(1-\varsigma)^2, 2\varsigma(1-\varsigma)^2, 2\varsigma^2(1-\varsigma), \varsigma^2 \quad (4)$$

according to the degree's parity, the SBP basis function of degree r , indicated by $S_k^r(\varsigma)$, is defined [23-27].

That is, when r is odd, $S_k^r(\varsigma)$ is defined as

$$S_k^r(\varsigma) = \begin{cases} \binom{\frac{r-1}{2}+k}{k} \varsigma^k (1-\varsigma)^{\frac{r-1}{2}+1} & , \text{for } 0 \leq k \leq \frac{r-1}{2}, \\ \binom{\frac{r-1}{2}+r-k}{r-k} \varsigma^{\frac{r-1}{2}+1} (1-\varsigma)^{r-k} & , \text{for } \frac{r-1}{2}+1 \leq k \leq r. \end{cases}$$

when r is odd and

$$S_k^r(\varsigma) = \begin{cases} \binom{2^{-1}r+k}{k} \varsigma^k (1-\varsigma)^{2^{-1}r+1} & , \text{for } 0 \leq k \leq 2^{-1}r+1, \\ \binom{r}{2^{-1}m} \varsigma^{2^{-1}r} (1-\varsigma)^{2^{-1}r} & , \text{for } k=2^{-1}r, \\ \binom{2^{-1}r+r-k}{r-k} \varsigma^{2^{-1}r+1} (1-\varsigma)^{r-k} & , \text{for } 2^{-1}r \leq k \leq r. \end{cases}$$

when r is even.

We can write the Said-Ball curve of degree r , denoted by $S_k^r(\varsigma)$, with $m+1$ control points, denoted by $\{v_k\}_{k=0}^r$, can be written in terms of the power basis as follows [28]

$$S(\varsigma) = \sum_{k=0}^r \sum_{l=0}^r v_k m_{k,l} \varsigma^l, 0 \leq \varsigma \leq 1 \quad (6)$$

where

$$m_{k,l} = \begin{cases} (-1)^{l-k} \binom{k + \lfloor \frac{r}{2} \rfloor}{k} \binom{\lfloor \frac{r}{2} \rfloor + 1}{l-k}, & \text{for } 0 \leq k \leq \lfloor \frac{r}{2} \rfloor, \\ (-1)^{l-k} \binom{r}{k} \binom{k}{l-k}, & \text{for } k = \frac{r}{2}, \\ (-1)^{l-\lfloor \frac{r}{2} \rfloor-k} \binom{\lfloor \frac{r}{2} \rfloor + r - k}{r - k} \binom{r - k}{l - \lfloor \frac{r}{2} \rfloor - 1}, & \text{for } \lfloor \frac{r}{2} \rfloor + 1 \leq k \leq r. \end{cases} \quad (7)$$

and $\lfloor \zeta \rfloor$ and $\lceil \zeta \rceil$ denote the greatest integer less than or equal to ζ and the least integer greater than or equal to ζ respectively

Definition:

The Said-Ball monomial matrix is [28]

$$M = \begin{bmatrix} m_{00} & m_{01} & \cdots & \cdots & m_{0N} \\ m_{10} & m_{11} & \cdots & \cdots & m_{1N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ m_{N0} & m_{N1} & \cdots & \cdots & m_{NN} \end{bmatrix}_{(N+1) \times (N+1)} \quad (8)$$

where $m_{i,j}$ is given in Eq. (7)

3. METHOD OF SOLUTION

In this section, we will outline the procedure to be used to solve Equation (1) subject to initial and boundary conditions (2) and (3).

Firstly, we make the assumption that the solution in the truncated Said-Ball form

$$u(\zeta, \tau) \cong u_N(\zeta, \tau) = \sum_{m=0}^N \sum_{n=0}^N S_{m+1,n+1}^{m+1,n+1}(\zeta, \tau) a_{mn} \quad (9)$$

where $S_{m+1,n+1}(\zeta, \tau) = S_{m+1}(\zeta) S_{n+1}(\tau)$ and $u_N(\zeta, \tau)$ is the approximate solution of Eq. (1) $a_{m,n}, m, n = 0, 1, \dots, N$, are the unknown Said-Ball coefficients, N is chosen as any positive integer such that $N \geq 1$.

We can write

$$S(\tau) = X(\tau)M^T \quad (10)$$

Where $X(\tau) = [1 \ \tau \ \tau^2 \ \dots \ \tau^N]$ and M given in Eq. (8). Then, by replacing the expression (10) into (9), we obtain the following matrix relations:

$$u_N(\zeta, \tau) = X(\zeta)M^T \bar{X}(\tau) \bar{M}^T A \quad (11)$$

where

$$\begin{aligned} \bar{X}(\tau) &= I_N \otimes X(\tau), \bar{M}^T(\tau) = I_N \otimes M^T, \\ A &= [a_{0,0} \ a_{0,1} \ \cdots \ a_{0,N} \ \cdots \ a_{N,0} \ a_{N,1} \ \cdots \ a_{N,N}]^T \end{aligned}$$

On the other hand, the relation between the matrix $X(\tau)$ and its derivatives $X'(\tau)$ and $X''(\tau)$ are

$$X'(\tau) = X(\tau)\Lambda, \quad X''(\tau) = X(\tau)\Lambda^2 \quad (12)$$

where

$$\Lambda = \begin{cases} i & , j = i + 1, \\ 0 & , \text{otherwise.} \end{cases} \quad (13)$$

Next, we arrange the matrix relations of the derivatives u_τ , $u_{\zeta\zeta}$ and u_ζ by using equations (10) - (12) in the following manner.

$$\begin{aligned} u_\tau(\zeta, \tau) &= X(\zeta)M^T \bar{X}(\tau) \bar{\Lambda} \bar{M}^T A, \\ u_\zeta(\zeta, \tau) &= X(\zeta)\Lambda M^T \bar{X}(\tau) \bar{M}^T A, \\ u_{\zeta\zeta}(\zeta, \tau) &= X(\zeta)\Lambda^2 M^T \bar{X}(\tau) \bar{M}^T A, \end{aligned} \quad (14)$$

By substituting the relations (14) into Eq. (1) we have the fundamental matrix form for Eq. (1):

$$\begin{aligned} & \left\{ X(\zeta)M^T \bar{X}(\tau) \bar{\Lambda} \bar{M}^T - \varepsilon X(\zeta)\Lambda^2 M^T \bar{X}(\tau) \bar{M}^T \right. \\ & \left. + a(\zeta)X(\zeta)\Lambda M^T \bar{X}(\tau) \bar{M}^T + b(\zeta)X(\zeta)M^T \bar{X}(\tau) \bar{M}^T \right\} A = F(\zeta, \tau), 0 \leq \zeta \leq L, 0 \leq \tau \leq T. \end{aligned} \quad (15)$$

or shortly

$$WA = F \text{ or } [W; F]$$

where

$$W = X(\zeta)M^T\bar{X}(\tau)\bar{A}\bar{M}^T - \varepsilon X(\zeta)A^2M^T\bar{X}(\tau)\bar{M}^T + a(\zeta)X(\zeta)AM^T\bar{X}(\tau)\bar{M}^T + b(\zeta)X(\zeta)M^T\bar{X}(\tau)\bar{M}^T$$

By putting the collocation points, for $\zeta \in [0, L], \tau \in [0, T]$

$$\zeta_i = \frac{1}{2} - \frac{1}{2} \cos\left(\frac{i\pi}{N+1}\right), \tau_j = \frac{1}{2} - \frac{1}{2} \cos\left(\frac{j\pi}{N+1}\right), i, j = 0, 1, \dots, N. \quad (16)$$

into Eq. (15), then we have

$$\begin{aligned} W &= [W_1 \quad W_2 \quad \dots \quad W_N]^T, \\ W_i &= [W(\zeta_i, \tau_0) \quad W(\zeta_i, \tau_1) \quad \dots \quad W(\zeta_i, \tau_N)]^T \\ G &= [G_1 \quad G_2 \quad \dots \quad G_N]^T, \\ G_i &= [G(\zeta_i, \tau_0) \quad G(\zeta_i, \tau_1) \quad \dots \quad G(\zeta_i, \tau_N)]^T, i = 0, 1, \dots, N. \end{aligned}$$

By replacing the relationship (16) in equations (2)-(3), we get the matrix representation.

$$u(\zeta, 0) = X(\zeta_i)M^T\bar{X}(0)\bar{M}^T A = g(\zeta_i)$$

for the initial condition (2) and

$$\begin{aligned} u(0, \tau) &= X(0)M^T\bar{X}(\tau_i)\bar{M}^T A = h_0(\tau_i), \\ u(L, \tau) &= X(L)M^T\bar{X}(\tau_i)\bar{M}^T A = h_1(\tau_i) \end{aligned}$$

for the boundary conditions (3), where $i = 0, 1, \dots, N$, or in short form

$$U_1 A = G \text{ or } [U_1; G], U_2 A = H_0 \text{ or } [U_2; H_0] \text{ and } U_3 A = H_1 \text{ or } [U_3; H_1] \quad (17)$$

In order to get the solution to equation (1) given the conditions (2)-(3), an augmented matrix was created by substituting the row matrices (15) with the $(N+1) \times (N+1)$ rows from the matrix (17). This results in the formation of a new augmented matrix.

$$[\tilde{W}; \tilde{G}] = \begin{bmatrix} W; F \\ U_1; G \\ U_2; H_0 \\ U_3; H_1 \end{bmatrix}$$

Then we solve the system $A = (\tilde{W})^{-1}\tilde{G}$ if $\text{rank}(\tilde{W}) = \text{rank}(\tilde{W}; \tilde{G}) = (N+1)^2$ and A is uniquely determined. So, the coefficients of the unknown Said-Ball polynomials are determined using this method. Therefore, the solution to $u_N(x, t)$ is approximately determined in the form of equation (9).

4. ERROR ANALYSIS

The estimated error for equation (1) is provided in this section; it enhances the accuracy of the solution for the Said-Ball polynomials. The resultant equation has to be satisfied approximately, that is, for $\zeta = \zeta_r, 0 \leq \zeta_r \leq 1$ and $\tau = \tau_s, 0 \leq \tau_s \leq 1$.

$$E_N(\zeta_r, \tau_s) = |u_\tau(\zeta_r, \tau_s) - \varepsilon u_{\zeta\zeta}(\zeta_r, \tau_s) + a(\zeta_r)u_\zeta(\zeta_r, \tau_s) + b(\zeta_r)u(\zeta_r, \tau_s) - F(\zeta_r, \tau_s)| \cong 0$$

Where $E_N(\zeta_r, \tau_s) \leq 10^{-k_{rs}} = 10^{-k}$ (k is positive integer). If $\max 10^{-k_{rs}} = 10^{-k}$ is prescribed, then the truncation limit N is increased until the difference $E_N(\zeta_r, \tau_s)$ at each of the points becomes smaller than the prescribed 10^{-k} . On the other hand, we use absolute error (AE) for measuring errors. If $u_N(\zeta, \tau)$ is an approximation to $u(\zeta, \tau)$ the absolute error is $|e_N(\zeta, \tau)| = |u(\zeta, \tau) - u_N(\zeta, \tau)|$. To facilitate the comparison of our findings with those of alternative approaches, we utilize L_2 norm L_∞ and norm, which are denoted as follows:

$$\|e_N(\zeta, \tau)\|_2 = \left(\int_0^T \int_0^L (e_N(\zeta, \tau))^2 d\zeta d\tau \right)^{1/2},$$

$$\|e_N(\zeta, \tau)\|_\infty = \max_{(\zeta, \tau) \in [0, L] \times [0, T]} |e_N(\zeta, \tau)|.$$

5. NUMERICAL EXAMPLES

The procedure described in Section 3 is implemented on two illustrative problems in this section. Every necessary calculation has been performed using MATLAB R2021a

Example 1. The first example in our study is the following equation [1, 3, 4]

$$u_\tau - \varepsilon u_{\zeta\zeta} + (2\zeta + 1)u_\zeta + \zeta^2 u = \frac{e^{\zeta+\tau}}{\varepsilon}(\zeta^2 + 2\zeta + 2 - \varepsilon), \quad (18)$$

with the initial condition

$$u(\zeta, 0) = \frac{e^\zeta}{\varepsilon}, \quad 0 \leq \zeta \leq 1, \quad (19)$$

and the boundary conditions

$$u(0, \tau) = \frac{e^\tau}{\varepsilon}, \quad u(1, \tau) = \frac{e^{\tau+1}}{\varepsilon}, \quad 0 \leq \tau \leq 1. \quad (20)$$

The exact solution of the present problem is $u(\zeta, 0) = \frac{e^{\zeta+\tau}}{\varepsilon}$.

We have utilized the approach outlined in Section 3 to examine Example 1, considering various options for N and employing multiple values for the perturbation parameter ε . Figure 1 shows the approximate solutions $u_6(\zeta, \tau)$ for four different ε values.

To facilitate comparison with alternative collocation methods, we have computed the L_2 and L_∞ norms of the AE for N values ranging from 5 to 10. The values are presented in Table 1. While, Table 2 displays the AE for example 1, with $N = 10$ and $\varepsilon = 10^{-1}$, across various values of τ .

TABLE 1 Comparison of the L_∞ error of the AE function $|e_N(\zeta, \tau)|$ for different values of N and in Example 1 ε

PM	$N = 5$	$N = 6$	$N = 7$	$N = 8$	$N = 9$	$N = 10$
$\varepsilon = 1/10$	8.4771E-04	4.4025E-06	3.0556E-07	1.3021E-08	6.2679E-10	3.3103E-11
$\varepsilon = 1/100$	8.4771E-04	5.2696E-05	1.3459E-06	3.7924E-08	1.0859E-09	3.0996E-11
$\varepsilon = 1/1000$	8.4320E-03	5.2635E-04	1.2767E-05	3.8824E-07	9.7772E-09	3.5053E-10
$\varepsilon = 1/10000$	8.4309E-02	5.2623E-03	1.2712E-04	3.8995E-06	9.7036E-08	3.4861E-09
Reff [3]	$N = 5$	$N = 6$	$N = 7$	$N = 8$	$N = 9$	$N = 10$
$\varepsilon = 1/10$	1.9640E-3	1.0855E-4	8.6060E-6	1.1654E-7	1.2083E-9	2.3913E-10
$\varepsilon = 1/100$	4.3049E-2	1.5669E-3	1.3818E-4	2.0306E-6	3.8459E-8	1.5497E-8
$\varepsilon = 1/1000$	4.7793E-1	7.1433E-2	1.1717E-2	1.9467E-4	2.2718E-6	1.2584E-7
$\varepsilon = 1/10000$	4.8544	9.8674E-1	1.6973E-1	1.1336E-2	8.2980E-5	5.1276E-6
Reff [13]	$N = 5$	$N = 6$	$N = 7$	$N = 8$	$N = 9$	
$\varepsilon = 1/10$	9.6181E-4	1.8000E-5	1.5525E-6	1.2692E-5	6.8182E-9	
$\varepsilon = 1/100$	6.0181E-3	2.2000E-4	1.1333E-5	1.1429E-7	8.5000E-8	
$\varepsilon = 1/1000$	6.3998E-2	2.1500E-3	1.1365E-4	1.3333E-6	9.2500E-7	
$\varepsilon = 1/10000$	6.5455E-1	2.1500E-2	1.1500E-3	1.3429E-5	9.0000E-6	

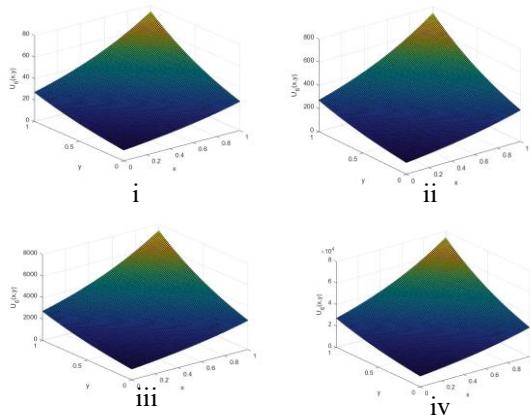


Figure 1. Approximate solutions of Example 1 obtained with $N = 6$ corresponding to i, $\varepsilon = 1/10$, ii, $\varepsilon = 1/100$, iii, $\varepsilon = 1/1000$ and iv, $\varepsilon = 1/10000$.

Table 2 Comparison the AE for example 1, with $N = 10$ and $\varepsilon = 10^{-1}$, across various values of τ .

ς_i	$\tau = 0.1$	$\tau = 0.3$	$\tau = 0.5$	$\tau = 0.9$
0.1	9.4378E-05	1.6155E-04	1.2113E-04	3.3651E-04
0.2	1.1199E-06	1.7145E-04	3.1997E-05	2.9740E-04
0.3	3.4494E-05	1.6925E-04	6.8859E-05	2.2835E-04
0.4	3.4143E-05	1.4561E-04	1.3862E-04	1.6038E-04
0.5	2.2180E-05	9.5216E-05	1.5400E-04	8.7212E-05
0.6	7.4082E-06	3.3329E-05	1.2800E-04	1.4748E-05
0.7	1.8610E-05	7.8109E-06	1.0204E-04	2.6218E-05
0.8	6.4979E-05	4.9280E-06	1.1082E-04	7.9679E-06
0.9	1.0471E-04	5.7055E-06	1.1704E-04	2.1253E-05

Example 2. Next, we will address the problem that was already analyzed in references [3, 4].

$$u_{\tau} - \varepsilon u_{\varsigma\varsigma} + (2 - \varsigma^2)u_{\varsigma} + \varsigma u = 10\tau^2 e^{-\tau} \varsigma(1 - \varsigma), \varsigma, \tau \in [0,1]. \quad (21)$$

Both the initial as well as the boundary conditions could be given by:

$$\begin{aligned} u(\varsigma, 0) &= 0, \varsigma \in [0,1], \\ u(0, \tau) &= u(1, \tau) = 0, \tau \in [0,1]. \end{aligned} \quad (22)$$

Since the exact solution of this problem is not known, the residual function $R_N(\varsigma, \tau)$ to assess the accuracy of the approximate solutions will be utilized. Example 2 is the one to which the present scheme has been applied. In Fig. 2 illustrates the residual functions of the approximate solutions obtained with different N values and for $\varepsilon = 2^{-4}$.

Furthermore, In figure 3, we have implemented the current technique on Example 2 using $N = 8$ and the singular perturbation parameter values of $\varepsilon = 2, 4, 6$, and 8 . However, the data in table 3 demonstrate that the

current strategy produces outcomes that are similar to the other ways stated for this specific case. Finally, Table 4 presents the AE for example 2, considering different values of τ , $N = 7$, and $\varepsilon = 2^{-2}$.

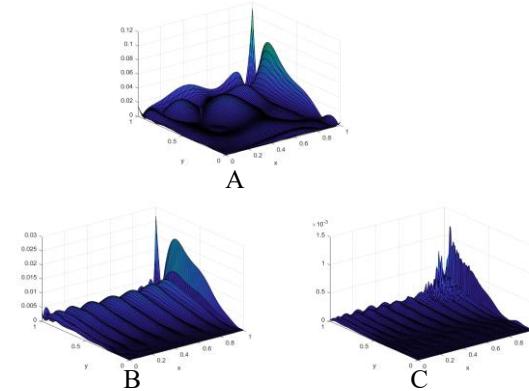


Fig 2. The residual functions of the approximate solutions for example 2, derived for A with $N=6$, B with $N=10$, and C with $N=14$, correspond to the selected perturbation parameter $\varepsilon = 2^{-4}$.

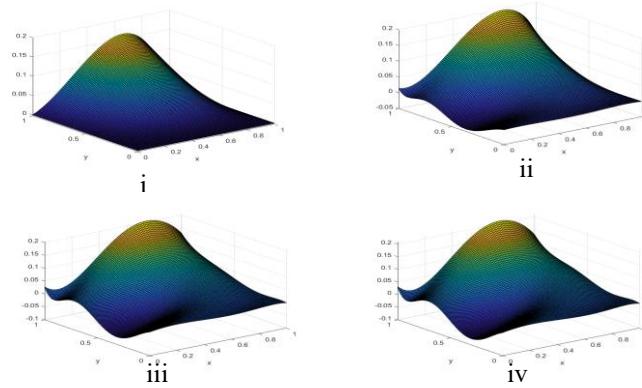


Fig. 3. Approximate solutions of Example 2 obtained with $N=8$ corresponding to i, $\varepsilon = 1/4$, ii, $\varepsilon = 1/16$, iii, $\varepsilon = 1/64$ and $\varepsilon = 1/256$.

TABLE 3. Comparison of the L_2 error of the absolute error function $|e_N(\zeta, \tau)|$ for various values of N and ε in Example 2

ε		2^{-2}	2^{-4}	2^{-6}	2^{-8}
PM	N=3	0. 15940E-3	0. 17052E-3	0. 17252E-3	0. 17377E-3
	N=4	0. 46406E-4	0. 82402E-4	0. 10558E-3	0. 11430E-3
Reff [3]	N=3	0. 1071E-3	0. 3357E-3	0. 8856E-3	0. 5429E-3
	N=4	0. 2723E-4	0. 2630E-3	0. 6464E-3	0. 4001E-3
Reff [2]	N=3	0. 1791E-3	0. 2454E-3	0. 4272E-3	0. 2909E-3
	N=4	0. 1090E-4	0. 1141E-3	0. 1187E-3	0. 8395E-2
Reff [29]	N=16	0. 2030E-3	0. 2810E-3	0. 3048E-2	0. 8395E-2
	N=32	0. 1113E-3	0. 1857E-3	0. 1275E-2	0. 4648E-2
Reff [30]	N=16	0. 26E-04	0. 115E-3	0. 225E-3	0. 152E-3
	N=32	0. 9921E-5	0. 51E-4	0. 167E-3	0. 144E-3
Reff [31]	N=3	0. 1124E-3	0. 1678E-3	0. 3090E-3	0. 3574E-3
	N=4	0. 6320E-4	0. 8104E-4	0. 1522E-3	0. 1934E-3

Table 4. Comparison the AE for example 2 at $N = 7, \varepsilon = 2^{-2}$.

ξ_i	$\tau = 0.1$	$\tau = 0.3$	$\tau = 0.5$	$\tau = 0.9$
0.1	1.8775E-05	2.9553E-05	2.3824E-05	2.7127E-04
0.2	5.3067E-05	6.3429E-05	2.0241E-05	6.2175E-04
0.3	1.4144E-05	2.1355E-05	3.7880E-05	1.9695E-04
0.4	6.7517E-05	5.0091E-05	2.3373E-05	5.5325E-04
0.5	6.9006E-05	3.4627E-05	7.4278E-05	4.6528E-04
0.6	2.8147E-05	4.3531E-05	6.4821E-06	3.2309E-04
0.7	1.0545E-04	6.8340E-05	1.2288E-04	6.9734E-04
0.8	2.2380E-05	1.0176E-05	6.5462E-05	2.7561E-05
0.9	1.2731E-04	5.6492E-05	2.0063E-04	6.9274E-04

6. Conclusions

This work presents a collocation technique that is built upon the Said-Ball approach. The method is designed to numerically solve convection-diffusion equations of parabolic type, which are often encountered in several engineering fields. The primary characteristic of the work being given is the need to solve an algebraic system of equations at each individual time step, as opposed to solving a global system produced in Said-Ball collocation techniques. The accuracy and efficiency of the suggested technique are shown by numerical tests, which are described in figures and tables. These results are compared with existing published schemes. The suggested approach can be expanded to include the fractional solutions of the singularly perturbed parabolic convection-diffusion equation.

REFERENCES

- [1] D. A. Koç, Y. Öztürk, and M. Gülsu, "A numerical algorithm for solving one-dimensional parabolic convection-diffusion equation," *Journal of Taibah University for Science*, vol. 17, no. 1, p. 2204808, 2023.
- [2] Ş. Yüzbaşı and N. Şahin, "Numerical solutions of singularly perturbed one-dimensional parabolic convection-diffusion problems by the Bessel collocation method," *Applied Mathematics and Computation*, vol. 220, pp. 305-315, 2013.
- [3] Ş. Yüzbaşı and M. Karaçayır, "An approximation technique for solutions of singularly perturbed one-dimensional convection-diffusion problem," *International Journal of Numerical Modelling: Electronic Networks, Devices and Fields*, vol. 33, no. 1, p. e2686, 2020.
- [4] M. Izadi and S. Yuzbasi, "A hybrid approximation scheme for 1-D singularly perturbed parabolic convection-diffusion problems," *Mathematical Communications*, vol. 27, no. 1, pp. 47-62, 2022.
- [5] N. Mphephu, "Numerical solution of 1-D convection-diffusion-reaction equation," University of Pretoria Pretoria, South Africa, 2013.
- [6] D. A. Goodwin *et al.*, "Clinical studies with In-111 BLEDTA, a tumor-imaging conjugate of bleomycin with a bifunctional chelating agent," *Journal of nuclear medicine*, vol. 22, no. 9, pp. 787-792, 1981.
- [7] D. Shongsheng and P. Jianing, "Application of convection-diffusion equation to the analyses of contamination between batches in multi-products pipeline transport," *Applied Mathematics and Mechanics*, vol. 19, pp. 757-764, 1998.
- [8] J. D. Murray, *An introduction*. Springer, 2002.
- [9] M. A. Efendiev and H. J. Eberl, "On positivity of solutions of semi-linear convection-diffusion-reaction systems, with applications in ecology and environmental engineering (Mathematical Models of Phenomena and Evolution Equations)," *Journal of the Institute of Mathematical Analysis*, vol. 1542, pp. 92-101, 2007.
- [10] B. Gürbüz and M. Sezer, "Modified Laguerre collocation method for solving 1-dimensional parabolic convection-diffusion problems," *Mathematical Methods in the Applied Sciences*, vol. 41, no. 18, pp. 8481-8487, 2018.
- [11] H. F. Ahmed and W. Hashem, "A novel spectral technique for 2D fractional telegraph equation models with spatial variable coefficients," *Journal of Taibah University for Science*, vol. 16, no. 1, pp. 885-894, 2022.
- [12] S. Kumbinarasaiah and M. Mulimani, "A novel scheme for the hyperbolic partial differential equation through Fibonacci wavelets," *Journal of Taibah University for Science*, vol. 16, no. 1, pp. 1112-1132, 2022.
- [13] S. A. Lima, M. Kamrujjaman, and M. S. Islam, "Numerical solution of convection-diffusion-reaction equations by a finite element method with error correlation," *AIP Advances*, vol. 11, no. 8, 2021.
- [14] M. S. Mohamed and Y. S. Hamed, "Solving the convection-diffusion equation by means of the optimal q-homotopy analysis method (Oq-HAM)," *Results in Physics*, vol. 6, pp. 20-25, 2016.

- [15] M. G. Porshokouhi, B. Ghanbari, M. Gholami, and M. Rashidi, "Approximate solution of convection-diffusion equation by the homotopy perturbation method," *Gen*, vol. 1, no. 2, pp. 108-114, 2010.
- [16] M. Dehghan, "On the numerical solution of the one-dimensional convection-diffusion equation. Mathl Probl Eng. 1: 61-74," ed, 2005.
- [17] Z. Chen, A. Gumel, and R. Mickens, "Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation," *Numerical Methods for Partial Differential Equations: An International Journal*, vol. 19, no. 3, pp. 363-379, 2003.
- [18] M. Dehghan, "Weighted finite difference techniques for the one-dimensional advection-diffusion equation," *Applied Mathematics and Computation*, vol. 147, no. 2, pp. 307-319, 2004.
- [19] D. A. Turuna, M. M. Woldaregay, and G. F. Duressa, "Uniformly convergent numerical method for singularly perturbed convection-diffusion problems," *Kyungpook mathematical journal*, vol. 60, no. 3, pp. 629-645, 2020.
- [20] H. Said, "A generalized Ball curve and its recursive algorithm," *ACM Transactions on Graphics (TOG)*, vol. 8, no. 4, pp. 360-371, 1989.
- [21] G. Wang, "Ball curve of high degree and its geometric properties," *Appl. Math.: A Journal of Chinese Universities*, vol. 2, pp. 126-140, 1987.
- [22] A. A. Ball, "CONSURF. Part one: introduction of the conic lofting tile," *Computer-Aided Design*, vol. 6, no. 4, pp. 243-249, 1974.
- [23] A. Kherd, A. Saaban, and N. Man, "An improved positivity preserving odd degree-n Said-Ball boundary curves on rectangular grid using partial differential equation," *Journal of Mathematics and Statistics*, vol. 12, no. 1, pp. 34-42, 2016.
- [24] A. Saaban, A. Kherd, A. Jameel, H. Akhadkulov, and F. Alipiah, "Image enlargement using biharmonic Said-Ball surface," in *Journal of Physics: Conference Series*, 2017, vol. 890, no. 1: IOP Publishing, p. 012086.
- [25] A. Kherd, Z. Omar, A. Saaban, and O. Adeyeye, "Solving first and second order delay differential equations using new operational matrices of Said-Ball polynomials," *Journal of Interdisciplinary Mathematics*, vol. 24, no. 4, pp. 921-930, 2021.