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 An This study introduces a numerical approach that converges uniformly for 

a convection-diffusion problem with singular perturbations. The collocation 

approach is used, and the derivative gets interpreted in the Caputo sense. 

Subsequently, a numerical scheme that converges uniformly is formulated 

using the Said-Ball collocation technique. Then, the primary issue may be 

simplified to a matrix equation that relates to a set of linear algebraic 

equations.  Following the resolution of this system, the approximation of the 

provided problem's unknown Said-Ball coefficients is determined. The 

computational result is verified to be in agreement with the theoretical 

expectation and to be more precise than certain established numerical methods 

through numerical experimentation. 
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  الخلاصة 

ويفُ  التجميع،  منهج  يسُتخدم  الشاذة.  الحراري والانتشار مع الاضطرابات  الحمل  بانتظام لمسألة  يتقارب  الدراسة منهجًا عددياً  سر تقدم هذه 

  بول. ثم، يمكن تبسيط المسألة-المشتق وفقاً لمفهوم كابوتو. بعد ذلك، تصُاغ خوارزمية عددية تتقارب بانتظام باستخدام تقنية التجميع سعيد

النظام، يتم تحديد تقريب معاملات سعيد الجبرية الخطية. بعد حل هذا  بول  - الأساسية إلى معادلة مصفوفية ترتبط بمجموعة من المعادلات 

نظرية  المجهولة للمسألة المطروحة. وقد تم التحقق من صحة النتيجة الحسابية من خلال التجارب العددية، حيث تبين أنها تتوافق مع التوقعات ال

 أنها أكثر دقة من بعض الطرق العددية المعروفة.و

 

1. INTRODUCTION 

The The second-order one-dimensional parabolic equation, as stated in [1-4], is the primary focus of this 

work. 

𝑢𝜏(𝜍, 𝜏) − 𝜀𝑢𝜍𝜍(𝜍, 𝜏) + 𝑎(𝜍)𝑢𝜍(𝜍, 𝜏) + 𝑏(𝜍)𝑢(𝜍, 𝜏) = 𝐹(𝜍, 𝜏),0 ≤ 𝜍 ≤ 𝐿, 0 ≤ 𝜏 ≤ 𝑇.      (1) 

where 𝑎(𝜍), 𝑏(𝜍)and 𝐹(𝜍, 𝜏) known real‐ valued functions and 𝜀 < 1is a known positive perturbation 

parameter that is generally taken to be close to zero. Equ. (1), known as the one‐ dimensional singularly 

perturbed convection-diffusion equation, will be considered under the initial condition (IC) 

𝑢(𝜍, 0) = 𝑔(𝜍),0 ≤ 𝜍 ≤ 𝐿.        (2) 

and the boundary conditions (BCs) 

𝑢(0, 𝜏) = ℎ0(𝜏), 𝑢(𝐿, 𝜏) = ℎ1(𝜏),0 ≤ 𝜏 ≤ 𝑇,       (3) 

where 0,  g h and 1h , as given by the initial and boundary conditions (2) and (3). 

Consequently, various authors have developed an interest in acquiring its approximate solutions via the use 

of diverse numerical approaches. The convection–diffusion-reaction process consists of three distinct stages 

[5]. During the first stage, there is a transfer of convection and materials across different regions. In the second 

phase, there is a movement of diffusion and materials from an area with a high concentration to an area with a 
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low concentration. The last stage is a process where decay, absorption, and the interaction of substances with 

other components take place.  

Modeling difficulties in many scientific domains, including biology, physics, and engineering, may be 

rather complex due to the one-dimensional parabolic convection-diffusion equation, which is a partial 

differential equation [6–12].  Therefore, a number of scholars have set out to find numerical solutions to these 

difficulties by using various numerical techniques:  

A Laguerre collocation approach was suggested by Gürbüz in order to resolve the 1D parabolic convection 

equation in [10]. A matrix-vector equation is transformed in this technique using the provided equation and 

conditions. Then, by employing collocation points, the Laguerre coefficients are derived from the solution of 

this matrix-vector equation. Lima et al. introduced a finite difference approach in [13] for both linear and 

nonlinear convection–diffusion–reaction models in order to get numerical results. The authors primarily 

concentrate on the examination of convergence, using errors and assessing the accuracy of the procedure. The 

authors in [14] presented an optimum q-homotopy analysis approach for obtaining an approximate solution to 

the convection-diffusion problem.  Additionally, the convection-diffusion-reaction has been addressed using a 

number of different approaches, including the following: the homotopy perturbation method [15], the finite 

element method [16], the Runga Kutta method [17], the Bessel collocation method [2], the weighted finite 

difference [18], a hybrid approximation scheme [4], and the uniform convergent numerical method [19]. The 

Said-Ball collocation technique is used in this investigation, where it is the first time to be used to solve 

singularly perturbed parabolic convection-diffusion equation. 

The paper is structured as follows: The already mentioned Said-Ball polynomial is discussed in Section 2. 

The paper illustrates the numerical scheme in Section 3. Section 4 of the paper provides a detailed explanation 

of a method called residual correction, which aims to enhance an existing solution. This method can also be 

utilized to estimate the error of the solution. In Section 5, two numerical examples are examined to exemplify 

the process of residual correction and to make comparisons with other methods. Section 6 contains the final 

remarks regarding the paper. 

2. Said-Ball polynomials (SBP) 

In this section, we will examine how the SBP may be utilized to create the operational matrix used to solve 

the 2nd order one-dimensional parabolic convection–diffusion equation under consideration. SBP is one of two 

generalized Ball polynomials (Said-Ball and Wang-Ball) of indeterminate degree established in the '80s [20, 

21], both of which have the hallmark property of strong generalization among Ball polynomials. To be more 

specific, the Ball polynomial was first described in [21, 22], which defines a cubic polynomial as: 

(1 − 𝜍)2, 2𝜍(1 − 𝜍)2, 2𝜍2(1 − 𝜍), 𝜍2                  (4) 

according to the degree's parity, the SBP basis function of degree 𝑟, indicated by 𝑆𝑘
𝑟(𝜍), is defined [23-27]. 

That is, when 𝑟 is odd, 𝑆𝑘
𝑟(𝜍)is defined as 

𝑆𝑘
𝑟(𝜍) =

{
 
 

 
 (

𝑟 − 1

2
+ 𝑘

𝑘

) 𝜍𝑘(1 − 𝜍)
𝑟−1
2 +1 ,for 0 ≤ 𝑘 ≤

𝑟 − 1

2
,

(
𝑟 − 1

2
+ 𝑟 − 𝑘

𝑟 − 𝑘

) 𝜍
𝑟−1
2 +1(1 − 𝜍)𝑟−𝑘 ,for  

𝑟 − 1

2
+ 1 ≤ 𝑘 ≤ 𝑟.

 

when 𝑟 is odd and 

𝑆𝑘
𝑟(𝜍) =

{
 
 

 
 (2

−1𝑟 + 𝑘
𝑘

) 𝜍𝑘(1 − 𝜍)2
−1𝑟+1 ,for  0 ≤ k ≤ 2−1𝑟 + 1,

(
𝑟

2−1𝑚
)𝜍2

−1𝑟(1 − 𝜍)2
−1𝑟 ,for  k=2−1𝑟,

(2
−1𝑟 + 𝑟 − 𝑘
𝑟 − 𝑘

) 𝜍2
−1𝑟+1(1 − 𝜍)𝑟−𝑘 ,for  2−1𝑟 ≤ 𝑘 ≤ 𝑟.

 

when 𝑟 is even. 

We can write the Said-Ball curve of degree 𝑟, denoted by𝑆𝑘
𝑟(𝜍), with 𝑚 + 1control points, denoted by 

{𝑣𝑘}𝑘=0
𝑟 , can be written in terms of the power basis as follows [28] 

𝑆(𝜍) = ∑ ∑ 𝑣𝑘
𝑟
𝑙=0

𝑟

𝑘=0
𝑚𝑘,𝑙𝜍

𝑙 , 0 ≤ 𝜍 ≤ 1                       (6)  

where 
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𝑚𝑘,𝑙 =

{
  
 

  
 (−1)(𝑙−𝑘) (

𝑘 + ⌊
𝑟

2
⌋

𝑘
) (
⌊
𝑟

2
⌋ + 1

𝑙 − 𝑘
) , for  0 ≤ k ≤ ⌊

𝑟

2
⌋ ,

(−1)(𝑙−𝑘) (
𝑟
𝑘
) (

𝑘
𝑙 − 𝑘

) , for  k=
𝑟

2
,

(−1)(𝑙−⌊
𝑟

2
⌋−𝑘)

(
⌊
𝑟

2
⌋ + 𝑟 − 𝑘

𝑟 − 𝑘
)(

𝑟 − 𝑘

𝑙 − ⌊
𝑟

2
⌋ − 1)

, for  ⌊
𝑟

2
⌋ + 1 ≤ 𝑘 ≤ 𝑟.

       (7) 

and  ⌊𝜍⌋ and ⌈𝜍⌉ denote the greatest integer less than or equal to 𝜍 and the least integer greater than or equal 

to 𝜍 respectively 

Definition:  

The Said-Ball monomial matrix is [28] 

𝑀 =

[
 
 
 
 
𝑚00 𝑚01 ⋯ ⋯ 𝑚0𝑁

𝑚10 𝑚11 ⋯ ⋯ 𝑚1𝑁

⋮ ⋮ ⋱ ⋮
⋮

𝑚𝑁0

⋮
𝑚𝑁1

⋱
⋯

⋱
⋯

⋮
𝑚𝑁𝑁]

 
 
 
 

(𝑁+1)×(𝑁+1)

      (8) 

where 𝑚𝑖,𝑗is given in Eq. (7) 

3. METHOD OF SOLUTION 

In this section, we will outline the procedure to be used to solve Equation (1) subject to initial and boundary 

conditions (2) and (3). 

Firstly, we make the assumption that the solution in the truncated Said-Ball form 

𝑢(𝜍, 𝜏) ≅ 𝑢𝑁(𝜍, 𝜏) = ∑ ∑ 𝑆𝑘
𝑚+1,𝑛+1(𝜍, 𝜏)𝑁

𝑛=0
𝑁
𝑚=0 𝑎𝑚𝑛     (9) 

where 𝑆𝑚+1,𝑛+1(𝜍, 𝜏) = 𝑆𝑚+1(𝜍)𝑆𝑛+1(𝜏) and 𝑢𝑁(𝜍, 𝜏) is the approximate solution of Eq. (1) 𝑎𝑚,𝑛, 𝑚, 𝑛 =

0,1, … , 𝑁, are the unknown Said-Ball coefficients, 𝑁 is chosen as any positive integer such that 𝑁 ≥ 1. 

We can write 

    𝑆(𝜏) = 𝑋(𝜏)𝑀𝑇                                   (10)  

Where  𝑋(𝜏) = [1 𝜏 𝜏2 ⋯ 𝜏𝑁] and 𝑀 given in Eq. (8). Then, by replacing the expression (10) into 

(9), we obtain the following matrix relations: 

𝑢𝑁(𝜍, 𝜏) = 𝑋(𝜍)𝑀
𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ 𝐴                        (11)  

where 

𝑋̅(𝜏) = 𝐼𝑁 ⊗𝑋(𝜏),𝑀𝑇̅̅ ̅̅ (𝜏) = 𝐼𝑁 ⊗𝑀𝑇 , 

𝐴 = [𝑎0,0 𝑎0,1 ⋯ 𝑎0,𝑁 ⋯ 𝑎𝑁,0 𝑎𝑁,1 ⋯ 𝑎𝑁,𝑁]𝑇 

On the other hand, the relation between the matrix 𝑋(𝜏) and its derivatives   𝑋′(𝜏)    and 𝑋′′(𝜏) are 

𝑋′(𝜏) = 𝑋(𝜏)𝛬, 𝑋′′(𝜏) = 𝑋(𝜏)𝛬2                          (12)  

where  

                                      𝛬 = {
𝑖 , 𝑗 = 𝑖 + 1.
0 , otherwise.

                        (13)  

Next, we arrange the matrix relations of the derivatives 𝑢𝜏, 𝑢𝜍𝜍 and 𝑢𝜍 by using equations (10) - (12) in the 

following manner. 

𝑢𝑡(𝜍, 𝜏) = 𝑋(𝜍)𝑀𝑇𝑋̅(𝜏)𝛬̅𝑀𝑇̅̅ ̅̅ 𝐴,

𝑢𝜍(𝜍, 𝜏) = 𝑋(𝜍)𝛬𝑀
𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ 𝐴,

𝑢𝜍𝜍(𝜍, 𝜏) = 𝑋(𝜍)𝛬2𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ 𝐴,

                           (14)  

By substituting the relations (14) into Eq. (1) we have the fundamental matrix form for Eq. (1): 

{𝑋(𝜍)𝑀𝑇𝑋(𝜏)𝛬𝑀𝑇 − 𝜀𝑋(𝜍)𝛬2𝑀𝑇𝑋(𝜏)𝑀𝑇 

                + 𝑎(𝜍)𝑋(𝜍)𝛬𝑀𝑇𝑋(𝜏)𝑀𝑇 + 𝑏(𝜍)𝑋(𝜍)𝑀𝑇𝑋(𝜏)𝑀𝑇} 𝐴 = 𝐹(𝜍, 𝜏),0 ≤ 𝜍 ≤ 𝐿, 0 ≤ 𝜏 ≤ 𝑇.              (15) 
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or shortly    

𝑊𝐴 = 𝐹or  [𝑊;𝐹] 

where 

𝑊 = 𝑋(𝜍)𝑀𝑇𝑋̅(𝜏)𝛬̅𝑀𝑇̅̅ ̅̅ − 𝜀𝑋(𝜍)𝛬2𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ + 𝑎(𝜍)𝑋(𝜍)𝛬𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ + 𝑏(𝜍)𝑋(𝜍)𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅  

By putting the collocation points, for 𝜍 ∈ [0, 𝐿], 𝜏 ∈ [0, 𝑇] 

𝜍𝑖 =
1

2
−

1

2
cos (

𝑖𝜋

𝑁+1
) , 𝜏𝑗 =

1

2
−

1

2
cos (

𝑗𝜋

𝑁+1
) , 𝑖, 𝑗 = 0,1, … , 𝑁.                                            (16)  

into Eq. (15), then we have  

𝑊 = [𝑊1 𝑊2 ⋯ 𝑊𝑁]
𝑇 , 

𝑊𝑖 = [𝑊(𝜍𝑖 , 𝜏0) 𝑊(𝜍𝑖 , 𝜏1) ⋯ 𝑊(𝜍𝑖 , 𝜏𝑁)]
𝑇 

𝐺 = [𝐺1 𝐺2 ⋯ 𝐺𝑁]
𝑇 , 

𝐺𝑖 = [𝐺(𝜍𝑖, 𝜏0) 𝐺(𝜍𝑖, 𝜏1) ⋯ 𝐺(𝜍𝑖 , 𝜏𝑁)]
𝑇 , 𝑖 = 0,1,⋯ ,𝑁. 

By replacing the relationship (16) in equations (2)-(3), we get the matrix representation. 

𝑢(𝜍, 0) = 𝑋(𝜍𝑖)𝑀
𝑇𝑋̅(0)𝑀𝑇̅̅ ̅̅ 𝐴 = 𝑔(𝜍𝑖) 

for the initial condition (2) and 

𝑢(0, 𝜏) = 𝑋(0)𝑀𝑇𝑋̅(𝜏𝑖)𝑀
𝑇̅̅ ̅̅ 𝐴 = ℎ0(𝜏𝑖), 

𝑢(𝐿, 𝜏) = 𝑋(𝐿)𝑀𝑇𝑋̅(𝜏𝑖)𝑀
𝑇̅̅ ̅̅ 𝐴 = ℎ1(𝜏𝑖) 

for the boundary conditions (3), where 𝑖 = 0,1,⋯ ,𝑁, or in short form 

                  𝑈1𝐴 = 𝐺 or [𝑈1; 𝐺], 𝑈2𝐴 = 𝐻0 or [𝑈2; 𝐻0] and  𝑈3𝐴 = 𝐻1 or  [𝑈3; 𝐻1]        (17)  

In order to get the solution to equation (1) given the conditions (2)-(3), an augmented matrix was created 

by substituting the row matrices (15) with the(𝑁 + 1) × (𝑁 + 1) rows from the matrix (17). This results in the 

formation of a new augmented matrix. 

[𝑊̃; 𝐺̃] = [

𝑊; 𝐹
𝑈1; 𝐺
𝑈2; 𝐻0
𝑈3; 𝐻1

] 

Then we solve the system 𝐴 = (𝑊̃)
−1
𝐺̃if 𝑟𝑎𝑛𝑘(𝑊̃) = 𝑟𝑎𝑛𝑘(𝑊̃; 𝐺̃) = (𝑁 + 1)2and A is uniquely 

determined. So, the coefficients of the unknown Said-Ball polynomials are determined using this method. 

Therefore, the solution to 𝑢𝑁(𝑥, 𝑡) is approximately determined in the form of equation (9). 

4. ERROR ANALYSIS 

The estimated error for equation (1) is provided in this section; it enhances the accuracy of the solution for 

the Said-Ball polynomials. The resultant equation has to be satisfied approximately, that is, for 𝜍 = 𝜍𝑟 , 0 ≤
𝜍𝑟 ≤ 1 and 𝜏 = 𝜏𝑠, 0 ≤ 𝜏𝑠 ≤ 1. 

𝐸𝑁(𝜍𝑟 , 𝜏𝑠) = |𝑢𝜏(𝜍𝑟 , 𝜏𝑠) − 𝜀𝑢𝜍𝜍(𝜍𝑟 , 𝜏𝑠) + 𝑎(𝜍𝑟)𝑢𝜍(𝜍𝑟 , 𝜏𝑠) + 𝑏(𝜍𝑟)𝑢(𝜍𝑟 , 𝜏𝑠) − 𝐹(𝜍𝑟 , 𝜏𝑠)| ≅ 0 

Where 𝐸𝑁(𝜍𝑟 , 𝜏𝑠) ≤ 10−𝑘𝑟𝑠 = 10−𝑘 ( k is positive integer). If max10 10rsk k− −= is prescribed, then the  

truncation limit N is increased until the difference 𝐸𝑁(𝜍𝑟 , 𝜏𝑠)at each of the points becomes smaller than the 

prescribed 10 .k−
 On the other hand, we use absolute error (AE) for measuring errors. If ( , )Nu    is an 

approximation to ( , )u    the absolute error is |𝑒𝑁(𝜍, 𝜏)| = |𝑢(𝜍, 𝜏) − 𝑢𝑁(𝜍, 𝜏)|. To facilitate the comparison 

of our findings with those of alternative approaches, we utilize 2L  norm L  and norm, which are denoted as 

follows: 
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‖𝑒𝑁(𝜍, 𝜏)‖2 = (∫∫(𝑒𝑁(𝜍, 𝜏))
2
𝑑𝜍𝑑𝜏

𝐿

0

𝑇

0

)

1 2⁄

,

‖𝑒𝑁(𝜍, 𝜏)‖∞ = max
(𝜍,𝜏)∈[0,𝐿]×[0,𝑇]

|𝑒𝑁(𝜍, 𝜏)|.

 

5. NUMERICAL EXAMPLES 

The procedure described in Section 3 is implemented on two illustrative problems in this section. Every 

necessary calculation has been performed using MATLAB R2021a 

Example 1. The first example in our study is the following equation [1, 3, 4] 

𝑢𝜏 − 𝜀𝑢𝜍𝜍 + (2𝜍 + 1)𝑢𝜍 + 𝜍
2𝑢 =

𝑒𝜍+𝜏

𝜀
(𝜍2 + 2𝜍 + 2 − 𝜀),                                      (18) 

with the initial condition 

𝒖(𝝇, 𝟎) =
𝒆𝝇

𝜺
, 𝟎 ≤ 𝝇 ≤ 𝟏,                 (19)                                                    

and the boundary conditions 

𝑢(0, 𝜏) =
𝑒𝜏

𝜀
, 𝑢(1, 𝜏) =

𝑒𝜏+1

𝜀
, 0 ≤ 𝜏 ≤ 1.                                 (20) 

The exact solution of the present problem is 𝑢(𝜍, 0) =
𝑒𝜍+𝜏

𝜀
. 

We have utilized the approach outlined in Section 3 to examine Example 1, considering various options for 

𝑁 and employing multiple values for the perturbation parameter 𝜀. Figure 1 shows the approximate solutions 

𝑢6(𝜍, 𝜏) for four different 𝜀 values. 

To facilitate comparison with alternative collocation methods, we have computed the 𝐿2 and 𝐿∞ norms of 

the AE for 𝑁 values ranging from 5 to 10. The values are presented in Table 1. While, Table 2 displays the  AE 

for example 1, with 𝑁 = 10 and 𝜀 = 10−1, across various values of 𝜏. 

TABLE 1 Comparison of the 𝐿∞error of the AE function |𝑒𝑁(𝜍, 𝜏)|for different values of N andin Example 1    

PM  𝑁 =5 𝑁 =6 𝑁 =7 𝑁 =8 𝑁 =9 𝑁 =10 

𝜀 =1/10 8.4771E-04 4.4025E-06 3.0556E-07 1.3021E-08 6.2679E-10 3.3103E-11 

𝜀 =1/100 8.4771E-04 5.2696E-05 1.3459E-06 3.7924E-08 1.0859E-09 3.0996E-11 

𝜀 =1/1000 8.4320E-03 5.2635E-04 1.2767E-05 3.8824E-07 9.7772E-09 3.5053E-10 

𝜀 =1/10000 8.4309E-02 5.2623E-03 1.2712E-04 3.8995E-06 9.7036E-08 3.4861E-09 

Reff [3] 𝑁 =5 𝑁 =6 𝑁 =7 𝑁 =8 𝑁 =9 𝑁 =10 

𝜀 =1/10 1.9640E−3 1.0855E−4 8.6060E−6 1.1654E−7 1.2083E−9 2.3913E−10 

𝜀 =1/100 4.3049E−2 1.5669E−3 1.3818E−4 2.0306E−6 3.8459E−8 1.5497E−8 

𝜀 =1/1000 4.7793E−1 7.1433E−2 1.1717E−2 1.9467E−4 2.2718E−6 1.2584E−7 

𝜀 =1/10000 4.8544 9.8674E−1 1.6973E−1 1.1336E−2 8.2980E−5 5.1276E−6 

Reff[13] 𝑁 =5 𝑁 =6 𝑁 =7 𝑁 =8 𝑁 =9  

𝜀 =1/10 9.6181E−4 1.8000E−5 1.5525E−6 1.2692E−5 6.8182E−9  

𝜀 =1/100 6.0181E−3 2.2000E−4 1.1333E−5 1.1429E−7 8.5000E−8  

𝜀 =1/1000 6.3998E−2 2.1500E−3 1.1365E−4 1.3333E−6 9.2500E−7  

𝜀 =1/10000 6.5455E−1 2.1500E−2 1.1500E−3 1.3429E−5 9.0000E−6  

 

 

 

 

 

 

 

 



Al-Ahgaff University Journal of Computer Science and Mathematics, Vol. 3, December 2025: 18-26 

 23  

 

A numerical scheme for singularly perturbed parabolic convection-diffusion equation using Said-Ball 

Polynomial (Ahmed Kherd) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Approximate solutions of Example. 1 obtained with 𝑁 = 6corresponding to i, 𝜀 = 1/10, ii, 𝜀 =
1/100, iii, 𝜀 = 1/1000 and iv, 𝜀 = 1/10000. 

 

 
Table 2 Comparison the AE for example 1, with 𝑁 = 10 and 𝜀 = 10−1, across various values of 𝜏. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Example 2. Next, we will address the problem that was already analyzed in references [3, 4]. 

                                   𝑢𝜏 − 𝜀𝑢𝜍𝜍 + (2 − 𝜍
2)𝑢𝜍 + 𝜍𝑢 = 10𝜏

2𝑒−𝜏𝜍(1 − 𝜍), 𝜍, 𝜏 ∈ [0,1].              (21) 

Both the initial as well as the boundary conditions could be given by: 

𝑢(𝜍, 0) = 0, 𝜍 ∈ [0,1],

𝑢(0, 𝜏) = 𝑢(1, 𝜏) = 0, 𝜏 ∈ [0,1].
                                        (22) 

Since the exact solution of this problem is not known, the residual function 𝑅𝑁(𝜍, 𝜏) to assess the accuracy 

of the approximate solutions will be utilized. Example 2 is the one to which the present scheme has been 

applied. In Fig. 2 illustrates the residual functions of the approximate solutions obtained with different 𝑁values 

and for 𝜀 = 2−4. 

Furthermore, In figure 3, we have implemented the current technique on Example 2 using 𝑁 = 8and the 

singular perturbation parameter values of  𝜀 = 2, 4, 6, and 8. However, the data in table 3 demonstrate that the 

i  𝜏 = 0.1 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.9 

0.1 9.4378E-

05 

1.6155E-

04 

1.2113E-

04 

3.3651E-

04 

0.2 1.1199E-

06 

1.7145E-

04 

3.1997E-

05 

2.9740E-

04 

0.3 3.4494E-

05 

1.6925E-

04 

6.8859E-

05 

2.2835E-

04 

0.4 3.4143E-

05 

1.4561E-

04 

1.3862E-

04 

1.6038E-

04 

0.5 2.2180E-

05 

9.5216E-

05 

1.5400E-

04 

8.7212E-

05 

0.6 7.4082E-

06 

3.3329E-

05 

1.2800E-

04 

1.4748E-

05 

0.7 1.8610E-

05 

7.8109E-

06 

1.0204E-

04 

2.6218E-

05 

0.8 6.4979E-

05 

4.9280E-

06 

1.1082E-

04 

7.9679E-

06 

0.9 1.0471E-

04 

5.7055E-

06 

1.1704E-

04 

2.1253E-

05 

i ii 

iii iv 
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current strategy produces outcomes that are similar to the other ways stated for this specific case. Finally, Table 

4 presents the AE for example 2, considering different values of 𝜏, 𝑁 = 7, and 𝜀 = 2−2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. The residual functions of the approximate solutions for example 2, derived for A with N=6, B with N=10, and C 

with N=14, correspond to the selected perturbation parameter 𝜀 = 2−4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Approximate solutions of Example 2 obtained with N=8 corresponding to i, 𝜀 = 1/4, ii, 𝜀 = 1/16, iii, 𝜀 = 1/64 and 

𝜀 = 1/256.  
 

TABLE 3. Comparison of the 𝐿2error of the absolute error function |𝑒𝑁(𝜍, 𝜏)|for various values of 𝑁and  𝜀in Example 2            

𝜀 2−2 2−4 2−6 2−8 

PM N=3 0. 

15940E-3 

0. 

17052E-3 

0. 

17252E-3 

0. 

17377E-3 

N=4 0. 

46406E-4 

0. 

82402E-4 

0. 

10558E-3 

0. 

11430E-3 

Reff 

[3] 

N=3 0. 

1071E−3 

0. 

3357E−3 

0. 

8856E−3 

0. 

5429E−3 

N=4 0. 

2723E−4 

0. 

2630E−3 

0. 

6464E−3 

0. 

4001E−3 

Reff 

[2] 

N=3 0. 

1791E−3 

0. 

2454E−3 

0. 

4272E−3 

0. 

2909E−3 

N=4 0. 

1090E−4 

0. 

1141E−3 

0. 

1187E−3 

0. 

8395E−2 

Reff 

[29] 

N=16 0. 

2030E−3 

0. 

2810E−3 

0. 

3048E−2 

0. 

8395E−2 

N=32 0. 

1113E−3 

0. 

1857E−3 

0. 

1275E−2 

0. 

4648E−2 

Reff 

[30] 

N=16 0. 26E−04 0. 115E−3 0.225E−3 0. 152E−3 

N=32 0. 

9921E−5 

0. 51E−4 0. 167E−3 0. 144E−3 

Reff 

[31] 

N=3 0. 

1124E−3 

0. 

1678E−3 

0. 

3090E−3 

0. 

3574E−3 

N=4 0. 

6320E−4 

0. 

8104E−4 

0. 

1522E−3 

0. 

1934E−3 
 

A 

B C 

i 
ii 

iii iv 
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Table 4. Comparison the AE for example 2 at 𝑁 = 7, 𝜀 = 2−2. 

𝜍𝑖 𝜏 = 0.1 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.9 

0.1 1.8775E-05 2.9553E-05 2.3824E-05 2.7127E-04 

0.2 5.3067E-05 6.3429E-05 2.0241E-05 6.2175E-04 

0.3 1.4144E-05 2.1355E-05 3.7880E-05 1.9695E-04 

0.4 6.7517E-05 5.0091E-05 2.3373E-05 5.5325E-04 

0.5 6.9006E-05 3.4627E-05 7.4278E-05 4.6528E-04 

0.6 2.8147E-05 4.3531E-05 6.4821E-06 3.2309E-04 

0.7 1.0545E-04 6.8340E-05 1.2288E-04 6.9734E-04 

0.8 2.2380E-05 1.0176E-05 6.5462E-05 2.7561E-05 

0.9 1.2731E-04 5.6492E-05 2.0063E-04 6.9274E-04 

 

 

6. Conclusions 

This work presents a collocation technique that is built upon the Said-Ball approach. The method is 

designed to numerically solve convection-diffusion equations of parabolic type, which are often encountered 

in several engineering fields. The primary characteristic of the work being given is the need to solve an 

algebraic system of equations at each individual time step, as opposed to solving a global system produced in 

Said-Ball collocation techniques. The accuracy and efficiency of the suggested technique are shown by 

numerical tests, which are described in figures and tables. These results are compared with existing published 

schemes. The suggested approach can be expanded to include the fractional solutions of the singularly 

perturbed parabolic convection-diffusion equation. 
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