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1. INTRODUCTION
The The second-order one-dimensional parabolic equation, as stated in [1-4], is the primary focus of this
work.

U (6, 7) — eucc(6,7) + a(e)uc(s, 1) + b(Qu(s,7) = F(,1)0<¢=<L0=<t<T. (1)

where a(¢),b(¢)and F(g,7) known real- valued functions and & < 1lis a known positive perturbation
parameter that is generally taken to be close to zero. Equ. (1), known as the one- dimensional singularly
perturbed convection-diffusion equation, will be considered under the initial condition (IC)

u(5,0)=g()0=<¢<L (2

and the boundary conditions (BCs)

u(0,7) = hy(r),u(L,7) =h(1),0<t<T, (3

where g, h,and h,, as given by the initial and boundary conditions (2) and (3).

Consequently, various authors have developed an interest in acquiring its approximate solutions via the use
of diverse numerical approaches. The convection—diffusion-reaction process consists of three distinct stages
[5]. During the first stage, there is a transfer of convection and materials across different regions. In the second
phase, there is a movement of diffusion and materials from an area with a high concentration to an area with a
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low concentration. The last stage is a process where decay, absorption, and the interaction of substances with
other components take place.

Modeling difficulties in many scientific domains, including biology, physics, and engineering, may be
rather complex due to the one-dimensional parabolic convection-diffusion equation, which is a partial
differential equation [6—12]. Therefore, a number of scholars have set out to find numerical solutions to these
difficulties by using various numerical techniques:

A Laguerre collocation approach was suggested by Giirbiiz in order to resolve the 1D parabolic convection
equation in [10]. A matrix-vector equation is transformed in this technique using the provided equation and
conditions. Then, by employing collocation points, the Laguerre coefficients are derived from the solution of
this matrix-vector equation. Lima et al. introduced a finite difference approach in [13] for both linear and
nonlinear convection—diffusion-reaction models in order to get numerical results. The authors primarily
concentrate on the examination of convergence, using errors and assessing the accuracy of the procedure. The
authors in [14] presented an optimum gq-homotopy analysis approach for obtaining an approximate solution to
the convection-diffusion problem. Additionally, the convection-diffusion-reaction has been addressed using a
number of different approaches, including the following: the homotopy perturbation method [15], the finite
element method [16], the Runga Kutta method [17], the Bessel collocation method [2], the weighted finite
difference [18], a hybrid approximation scheme [4], and the uniform convergent numerical method [19]. The
Said-Ball collocation technique is used in this investigation, where it is the first time to be used to solve
singularly perturbed parabolic convection-diffusion equation.

The paper is structured as follows: The already mentioned Said-Ball polynomial is discussed in Section 2.
The paper illustrates the numerical scheme in Section 3. Section 4 of the paper provides a detailed explanation
of a method called residual correction, which aims to enhance an existing solution. This method can also be
utilized to estimate the error of the solution. In Section 5, two numerical examples are examined to exemplify
the process of residual correction and to make comparisons with other methods. Section 6 contains the final
remarks regarding the paper.

2. Said-Ball polynomials (SBP)

In this section, we will examine how the SBP may be utilized to create the operational matrix used to solve
the 2nd order one-dimensional parabolic convection—diffusion equation under consideration. SBP is one of two
generalized Ball polynomials (Said-Ball and Wang-Ball) of indeterminate degree established in the '80s [20,
21], both of which have the hallmark property of strong generalization among Ball polynomials. To be more
specific, the Ball polynomial was first described in [21, 22], which defines a cubic polynomial as:

(1-¢7%2¢(1-¢)%2¢*(1 —¢),¢? “4)

according to the degree's parity, the SBP basis function of degree r, indicated by Sf (¢), is defined [23-27].
That is, when r is odd, S (¢)is defined as

r—1 r—1 r—1
(T+k>ck(1—C)T+l ,forOSkST,
Sk(9) = r—1 ‘ 1 1
r— r—
( 5 +T_k>gT+1(1—C)r_k for ——+1<k=r
r—k
when r is odd and
1 _
(B ea-grt o 0sks2ir 4L,
=1 (pip)s* "= Sfor k=27,
1 _
(2 r+r-— k) C2 1r+1(1 _ C)'f—k Jfor 27r<k<r.
r—k

when r is even.

We can write the Said-Ball curve of degree r, denoted bySy (¢), with m + 1control points, denoted by
{Vi k=0 can be written in terms of the power basis as follows [28]

S(©) = Mg Tico Vi MiusH0 < g <1 (6)

where
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[ pew <k + lzJ) (lzJ + 1>, for 0<ks<[f,
k I—k
I R ) Wit o)

| T r —k
-1 “’liJ”‘)O"J“Lr_k)( "Ir > for |5[+1<k<r
R N | O e e
and |¢] and [¢] denote the greatest integer less than or equal to ¢ and the least integer greater than or equal
to ¢ respectively
Definition:

The Said-Ball monomial matrix is [28]

mOO m01 oo o mON
m10 m11 oo o mlN

M=|: i - ; (8)
Myo  Myy MNNI v+ 1)x(N+1)

where m; ;is given in Eq. (7)

3. METHOD OF SOLUTION
In this section, we will outline the procedure to be used to solve Equation (1) subject to initial and boundary
conditions (2) and (3).

Firstly, we make the assumption that the solution in the truncated Said-Ball form
u(e D) 2uy(6 ) = Zho Zn-oS¢ (O D Gpn )

where S;4114+1($ T) = Sin+1(6)Sn4+1(7) and uy (g, 7) is the approximate solution of Eq. (1) a;,,, m,n =
0,1, ..., N, are the unknown Said-Ball coefficients, N is chosen as any positive integer such that N > 1.

We can write

S(t) = X(r)MT (10)
Where X(7) =[1 7 7% ... ¢N]and M given in Eq. (8). Then, by replacing the expression (10) into
(9), we obtain the following matrix relations:
uy(,7) = X(OMTX(1)MTA (11)
where

X@ = Iy @ X(@),MT(x) = Iy @ M,
A=lagy a1 -+ Qon " Qngo Ava o Ann]T

On the other hand, the relation between the matrix X(t) and its derivatives X'(t) and X" (1) are

X'(1) =X(@)A, X" () = X(1)A? (12)
where
(i =i+l
4= {0 , otherwise. (13)

Next, we arrange the matrix relations of the derivatives u;, U, and u, by using equations (10) - (12) in the
following manner.

U (¢, 7) = X()MTX (1) AMT 4,
uc(s,7) = X()AMTX(T)MTA, (14)
Uee(6,7) = X()APMTX (1)MT A,
By substituting the relations (14) into Eq. (1) we have the fundamental matrix form for Eq. (1):
{X(MTX(@)AMT — ex(5)A2MTX (x)MT
+a(Q)X()AMTX(T)MT + b(g)X(g)MT)_((T)W}A =F(T)0<¢<LO<T<T. (15)
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or shortly
WA = For [W;F]
where
W = X(OMTX(0)AMT — eX(¢)A2M"X (T)MT + a(¢)X (¢)AMTX(T)MT + b(¢)X(¢)MTX (v)MT
By putting the collocation points, for ¢ € [0,L],t € [0, T]
¢ = %— %cos (%),Tj = % - %cos (ﬁ),i,j =01,..,N. (16)

into Eq. (15), then we have

W = [W1 W2 WN]T,
W, =[W(,t) W(int) - W(gty)]"
G:[G1 G, - GN]T’
G =[6Gut) G(sit) - G(spTw)]"i=01,-,N.

By replacing the relationship (16) in equations (2)-(3), we get the matrix representation.
u(s,0) = X(cHM"X(0)MTA = g(5:)
for the initial condition (2) and
u(0,7) = X(O)M"X(z)MTA = hy()),
u(L,7) = X(L)MTX (t;,)MTA = h,(1;)
for the boundary conditions (3), where i = 0,1, -+, N, or in short form
U,A = Gor [Uy; G],U,A = Hy or [Uy; Hy] and Uz;A = H, or [Us; Hy] (17)

In order to get the solution to equation (1) given the conditions (2)-(3), an augmented matrix was created
by substituting the row matrices (15) with the(N + 1) X (N + 1) rows from the matrix (17). This results in the
formation of a new augmented matrix.

W;F
U; G
U,; Hy
Us; Hy

[W; 6] =

Then we solve the system A = (W)_lgif rank(W) = rank(W; 5) = (N + 1)%and A is uniquely
determined. So, the coefficients of the unknown Said-Ball polynomials are determined using this method.
Therefore, the solution to uy (x, t) is approximately determined in the form of equation (9).

4. ERROR ANALYSIS

The estimated error for equation (1) is provided in this section; it enhances the accuracy of the solution for
the Said-Ball polynomials. The resultant equation has to be satisfied approximately, that is, for ¢ =¢,,0 <
¢.<land7=1,0<7,<1.

EN(grv Ts) = |ur(§r: Ts) - gugg(crrfs) + a(Cr)ug(Cr» Ts) + b(Cr)u(Cr, Ts) - F(CT' Ts)l =0
Where Ey (¢, 75) < 107%rs = 107 (k is positive integer). If max 10™*» =107 is prescribed, then the
truncation limit /V is increased until the difference Ey (g, Ts)at each of the points becomes smaller than the
prescribed 107%. On the other hand, we use absolute error (AE) for measuring errors. If u,, (¢,7) is an
approximation to u# (g, 7) the absolute error is |ey (¢, 7)| = |u(s, 7) — uy(s, 7)|. To facilitate the comparison

of our findings with those of alternative approaches, we utilize L, norm L and norm, which are denoted as

follows:
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T 1/2
L
2
lew(s, D, = f (en(s,0))dsdz |
0
H%@ﬂm=m¥mﬁwyﬂm%

5. NUMERICAL EXAMPLES
The procedure described in Section 3 is implemented on two illustrative problems in this section. Every
necessary calculation has been performed using MATLAB R2021a

Example 1. The first example in our study is the following equation [1, 3, 4]

¢+t
u,—eu§§+(2g+1)uc+g2u=eT(g2+2(;+2—£),

with the initial condition

and the boundary conditions
u(0,7) = %,u(l, T) =

The exact solution of the present problem is u(g, 0) =

u(s,0)=<,0<¢<1,

,0<1t< 1.

(20)

e§+r

&

(19)

(18)

We have utilized the approach outlined in Section 3 to examine Example 1, considering various options for
N and employing multiple values for the perturbation parameter €. Figure 1 shows the approximate solutions
U (s, T) for four different & values.

To facilitate comparison with alternative collocation methods, we have computed the L, and L,, norms of
the AE for N values ranging from 5 to 10. The values are presented in Table 1. While, Table 2 displays the AE
for example 1, with N = 10 and € = 1072, across various values of 7.

TABLE 1 Comparison of the Leerror of the AE function |ey (g, 7)|for different values of N andin Example 1 &

PM N =5 N =6 N =7 N =8 N =9 N =10

€ =1/10 8.4771E-04 4.4025E-06 3.0556E-07 1.3021E-08 6.2679E-10 3.3103E-11

€ =1/100 8.4771E-04 5.2696E-05 1.3459E-06 3.7924E-08 1.0859E-09 3.0996E-11

€ =1/1000 8.4320E-03 5.2635E-04 1.2767E-05 3.8824E-07 9.7772E-09 3.5053E-10
€ =1/10000 8.4309E-02 5.2623E-03 12712E-04 3.8995E-06 9.7036E-08 3.4861E-09
Reff [3] N =5 N =6 N =7 N =8 N =9 N =10

£ =1/10 1.9640E-3 1.0855E—4 8.6060E—6 1.1654E~7 1.2083E-9 2.3913E-10
€ =1/100 4.3049E-2 1.5669E-3 1.3818E—4 2.0306E—6 3.8459E-8 1.5497E-8

€ =1/1000 4.7793E-1 7.1433E-2 1.1717E-2 1.9467E—4 2.2718E-6 1.2584E~7

€ =1/10000 4.8544 9.8674E~1 1.6973E-1 1.1336E-2 8.2980E—5 5.1276E-6

Reff[13] N =5 N =6 N=7 N =8 N =9

£ =1/10 9.6181E—4 1.8000E—5 1.5525E-6 1.2692E-5 6.8182E—9

€ =1/100 6.0181E-3 2.2000E—4 1.1333E-5 1.1429E~7 8.5000E—8

€ =1/1000 6.3998E-2 2.1500E-3 1.1365E—4 1.3333E-6 9.2500E~7

€ =1/10000 6.5455E~1 2.1500E-2 1.1500E-3 1.3429E-5 9.0000E—6

A numerical scheme for singularly perturbed parabolic convection-diffusion equation using Said-Ball
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Figure 1. Approximate solutions of Example. 1 obtained with N = 6corresponding to i, € = 1/10, ii, € =

1/100, iii, ¢ = 1/1000 and iv, ¢ = 1/10000.

Table 2 Comparison the AE for example 1, with N = 10 and € = 101, across various values of 7.

Si
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Example 2. Next, we will address the problem that was already analyzed in references [3, 4].

Uy — €U + (2 = ¢Hue +u = 10t%e"¢(1 - ¢),¢,7 € [0,1].

7=0.1
9.4378E-
05

1.1199E-
06

3.4494E-
05

3.4143E-
05

2.2180E-
05

7.4082E-
06

1.8610E-
05

6.4979E-
05

1.0471E-
04

T=0.3
1.6155E-
04

1.7145E-
04

1.6925E-
04

1.4561E-
04

9.5216E-
05

3.3329E-
05

7.8109E-
06

4.9280E-
06

5.7055E-
06

=05
1.2113E-
04

3.1997E-
05

6.8859E-
05

1.3862E-
04

1.5400E-
04

1.2800E-
04

1.0204E-
04

1.1082E-
04

1.1704E-
04

=09
3.3651E-
04

2.9740E-
04

2.2835E-
04

1.6038E-
04

8.7212E-
05

1.4748E-
05

2.6218E-
05

7.9679E-
06

2.1253E-
05

Both the initial as well as the boundary conditions could be given by:

u(s,0) =0,¢ €[0,1],

u(0,7) =u(l,7) =0,7 € [0,1].

(22)

Since the exact solution of this problem is not known, the residual function Ry (¢, T) to assess the accuracy
of the approximate solutions will be utilized. Example 2 is the one to which the present scheme has been
applied. In Fig. 2 illustrates the residual functions of the approximate solutions obtained with different Nvalues

and for e = 274,

Furthermore, In figure 3, we have implemented the current technique on Example 2 using N = 8and the
singular perturbation parameter values of € = 2,4, 6, and 8. However, the data in table 3 demonstrate that the

A numerical scheme for singularly perturbed parabolic convection-diffusion equation using Said-Ball
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current strategy produces outcomes that are similar to the other ways stated for this specific case. Finally, Table
4 presents the AE for example 2, considering different values of 7, N = 7, and ¢ = 272,

B C

Fig 2. The residual functions of the approximate solutions for example 2, derived for A with N=6, B with N=10, and C
with N=14, correspond to the selected perturbation parameter € = 274,

i ' v

Fig. 3. Approximate solutions of Example 2 obtained with N=8 corresponding to i, € = 1/4, ii, € = 1/16, iii, € = 1/64 and
e =1/256.

TABLE 3. Comparison of the Lerror of the absolute error function |ey (¢, )|for various values of Nand €in Example 2

£ 272 274 276 278
PM | N=3 | 0. 0. 0. 0.
15940E-3 | 17052E-3 | 17252E-3 | 17377E-3
N=4 | 0. 0. 0. 0.
46406E-4 | 82402E-4 | 10558E-3 | 11430E-3
Reff | N=3 | 0. 0. 0. 0.
[3] 1071E-3 3357E-3 8856E-3 5429E-3
N=4 | 0. 0. 0. 0.
2723E—-4 2630E—3 6464E—3 4001E-3
Reff | N=3 | 0. 0. 0. 0.
[2] 1791E-3 2454E-3 4272E-3 2909E-3
N=4 | 0. 0. 0. 0.
1090E—4 1141E-3 1187E-3 8395E-2
Reff | N=16 | 0. 0. 0. 0.
[29] 2030E-3 2810E-3 3048E—2 8395E—2
N=32 | 0. 0. 0. 0.
1113E-3 1857E-3 1275E-2 4648E—2
Reff | N=16 | 0.26E-04 | 0. 115E-3 | 0.225E-3 | 0. 152E-3
[30] | N=32 | 0. 0.51E—4 0.167E-3 | 0. 144E-3
9921E-5
Reff | N=3 | 0. 0. 0. 0.
[31] 1124E-3 1678E—3 3090E-3 3574E-3
N=4 | 0. 0. 0. 0.
6320E—4 8104E—4 1522E-3 1934E-3

A numerical scheme for singularly perturbed parabolic convection-diffusion equation using Said-Ball
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Table 4. Comparison the AE for example 2 at N = 7,& = 272,

i =01 =03 t=05 =09

0.1 1.8775E-05 2.9553E-05 | 2.3824E-05 2.7127E-04
0.2  5.3067E-05 6.3429E-05 = 2.0241E-05 6.2175E-04
0.3  1.4144E-05 2.1355E-05 | 3.7880E-05 1.9695E-04
0.4  6.7517E-05 5.0091E-05 = 2.3373E-05 = 5.5325E-04
0.5  6.9006E-05 3.4627E-05 @ 7.4278E-05 4.6528E-04
0.6  2.8147E-05 4.3531E-05 @ 6.4821E-06 3.2309E-04
0.7 = 1.0545E-04 6.8340E-05 = 1.2288E-04 6.9734E-04
0.8  2.2380E-05 1.0176E-05 | 6.5462E-05 @ 2.7561E-05

0.9  1.2731E-04 5.6492E-05 = 2.0063E-04 = 6.9274E-04

6. Conclusions

This work presents a collocation technique that is built upon the Said-Ball approach. The method is
designed to numerically solve convection-diffusion equations of parabolic type, which are often encountered
in several engineering fields. The primary characteristic of the work being given is the need to solve an
algebraic system of equations at each individual time step, as opposed to solving a global system produced in
Said-Ball collocation techniques. The accuracy and efficiency of the suggested technique are shown by
numerical tests, which are described in figures and tables. These results are compared with existing published
schemes. The suggested approach can be expanded to include the fractional solutions of the singularly
perturbed parabolic convection-diffusion equation.
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