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 The sixth-generation (6G) of wireless communication, anticipated around 

2030, promises a paradigm shift towards intelligent, hyper-connected 

services, extending far beyond the capabilities of current 5G networks. This 

article provides a comprehensive exploration of the symbiotic evolution of 

two critical enabling technologies for 6G: millimeter-Wave (mmWave) 

communications and Artificial Intelligence (AI). We delve into the 

fundamental characteristics and advancements in mmWave technology, 

highlighting its potential to unlock vast spectrum resources essential for 6G’s 

ambitious data rate targets, alongside the inherent propagation challenges. The 

article then examines the pivotal role of AI as the engine for optimizing 6G 

network performance, detailing various AI techniques applicable to wireless 

communications and their specific use in enhancing mmWave systems 

through intelligent beam management, channel estimation, and radio resource 

management. Key Performance Metrics (KPIs) for AI-integrated 6G 

mmWave networks are discussed, encompassing both next-generation targets 

for traditional metrics like data rates, latency, and reliability, as well as novel 

metrics reflecting AI-native capabilities such as adaptability and learnability. 

The integration of AI across the 6G network architecture, including the Radio 

Access Network (RAN) and Core Network, is analyzed, supported by 

statistical insights and foundational mathematical models. Furthermore, the 

article explores transformative use cases enabled by this synergy, such as 

holographic communications, Extended Reality (XR), and intelligent 

infrastructure. Finally, we address the significant challenges related to 

complexity, scalability, energy efficiency, standardization, security, and 

ethical considerations, outlining crucial future research directions. This work 

concludes by synthesizing the indispensable roles of mmWave and AI in 

realizing the 6G promise and underscores the transformative potential of this 

evolution towards an intelligent and connected future. 
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  الخلاصة 

، يعد بتحول جذري نحو خدمات ذكية فائقة الاتصال،  2030من الاتصالات اللاسلكية، المتوقع ظهوره بحلول عام   (6G) الجيل السادس    

الحالية. تقدم هذه المقالة استكشافاً شاملاً للتطور التكاملي بين تقنيتين أساسيتين تمكّنان الجيل   (5G) تتجاوز بكثير قدرات شبكات الجيل الخامس

المليمتر  بموجات  الاتصالات  الاصطناعي  (mmWave) السادس:  تقنية .(AI) والذكاء  في  والتطورات  الأساسية  الخصائص   نتناول 

mmWave  مع تسليط الضوء على إمكاناتها في فتح موارد طيفية واسعة ضرورية لتحقيق أهداف الجيل السادس الطموحة في معدلات نقل ،

ثم تستعرض المقالة الدور المحوري للذكاء الاصطناعي كمحرك لتحسين أداء شبكات   البيانات، إلى جانب التحديات الطبيعية في الانتشار.

 مع شرح تقنيات الذكاء الاصطناعي المختلفة القابلة للتطبيق في الاتصالات اللاسلكية واستخدامها المحدد في تعزيز أنظمة  الجيل السادس، 

mmWave تنُاقش مؤشرات الأداء الرئيسية  .خلال الإدارة الذكية للحزم، وتقدير القنوات، وإدارة الموارد الراديوية  من (KPIs) لشبكات 

mmWave بالذكاء الاصطناعي في الجيل السادس، وتشمل أهداف الجيل القادم للمؤشرات التقليدية مثل معدلات البيانات، وزمن   المدمجة

صطناعي الأصلية مثل التكيف وقابلية التعلم. كما يتم تحليل دمج الاستجابة، والموثوقية، بالإضافة إلى مؤشرات جديدة تعكس قدرات الذكاء الا 

والشبكة الأساسية، مدعومًا برؤى إحصائية   (RAN) الذكاء الاصطناعي عبر بنية شبكة الجيل السادس، بما في ذلك شبكة الوصول الراديوي

علاوة على ذلك، تستعرض المقالة حالات الاستخدام التحولية التي تتيحها هذه التوليفة، مثل الاتصالات الهولوغرافية،    .ونماذج رياضية أساسية

، والبنية التحتية الذكية. وأخيرًا، يتم تناول التحديات الكبيرة المتعلقة بالتعقيد، وقابلية التوسع، وكفاءة الطاقة، والتوحيد  (XR) والواقع الممتد



Al-Ahgaff University Journal of Computer Science and Mathematics, Vol. 3, December 2025: 1-17 

 2  

 

 The Symbiotic Evolution of Millimeter-Wave Technology and Artificial Intelligence in the 6G Era (Ibrahim 

Eskandar) 

 لتقنيتيالقياسي، والأمن، والاعتبارات الأخلاقية، مع تحديد اتجاهات البحث المستقبلية الحاسمة. تختتم هذه الدراسة بتلخيص الأدوار الحيوية 

mmWave  الاصطناعي في تحقيق وعد الجيل السادس، وتؤكد على الإمكانات التحولية لهذا التطور نحو مستقبل ذكي ومترابط والذكاء. 

 

1. INTRODUCTION: The Dawn of 6G and the Imperative for Innovation 

The relentless evolution of wireless communication technologies has consistently reshaped societal 

interactions, economic landscapes, and technological frontiers (Fadhel, 2015). As the deployment of fifth-

generation (5G) networks matures globally, the research community and industry stakeholders are already 

deeply engaged in conceptualizing and developing the sixth-generation (6G) of wireless systems. Anticipated 

to be commercially available around 2030, 6G is not envisioned as a mere incremental upgrade from 5G but 

as a transformative paradigm shift, promising to integrate the physical, digital, and biological worlds into a 

seamless, intelligent, and hyper-connected continuum (Fayad et al., 2024; Saoud et al., 2024). This new era of 

connectivity will be characterized by unprecedented performance metrics, novel service capabilities, and a 

profound reliance on emerging technologies, among which millimeter-Wave (mmWave) spectrum and 

Artificial Intelligence (AI) are poised to play pivotal roles. The imperative for innovation in 6G stems from the 

escalating demands of future applications, such as truly immersive extended reality (XR), holographic 

communications, massive-scale Internet of Things (IoT), autonomous systems, and sophisticated sensing 

services, all of which necessitate a network infrastructure that is not only faster and more reliable but also 

inherently intelligent and adaptive (Cui et al., 2025; Lloria et al., 2025; Ullah et al., 2025). 

 

1.1 Defining the 6G Vision: Beyond Connectivity to Intelligent Services 

 The vision for 6G extends far beyond the traditional metrics of increased data rates and reduced latency, 

although these remain critical enablers. It encompasses a future where connectivity is ubiquitous, intelligent, 

and deeply intertwined with human activities and environmental perception. Key themes characterizing the 6G 

vision include the convergence of communication, computation, and sensing, leading to a network that can 

perceive its environment, learn from interactions, and proactively optimize its operations (SNS, 2021). This 

shift towards “intelligent services” implies that 6G networks will not just transmit data but will actively 

participate in data processing, decision-making, and service provisioning. The concept of a “network as a 

sensor” or “integrated sensing and communication (ISAC)” is a prominent aspect, where the network 

infrastructure itself becomes a distributed sensing platform, enabling high-resolution environmental awareness 

for applications ranging from autonomous driving to healthcare monitoring. Furthermore, 6G aims to deliver 

truly global coverage, including in remote and underserved areas, potentially leveraging non-terrestrial 

networks (NTNs) such as satellites and high-altitude platforms (HAPs). Sustainability, trustworthiness, and 

digital inclusion are also integral components of the 6G vision, emphasizing the need for energy-efficient 

operations, robust security and privacy mechanisms, and equitable access to the benefits of next-generation 

connectivity (SNS JU, 2025). The ambition is to create a human-centric network that enhances quality of life, 

fosters economic growth, and addresses societal challenges through intelligent and pervasive connectivity 

(Chai et al., 2025; Mehmood & Mehmood, 2025; Siddiky et al., 2025). 

 

1.2 The Role of Millimeter-Wave (mmWave) in Unlocking 6G Potential 

Millimeter-Wave (mmWave) frequencies, typically ranging from 30 GHz to 300 GHz, offer vast 

swathes of underutilized spectrum, which is crucial for achieving the multi-terabit per second (Tbps) data rates 

envisioned for 6G (Fayad, Cinkler, & Rak, 2024). While 5G has initiated the use of mmWave bands, 6G is 

expected to exploit these and even higher frequency bands (sub-THz or THz) more extensively to meet its 

ambitious capacity and throughput targets. The availability of large contiguous bandwidths in the mmWave 

spectrum directly translates to significantly higher data transmission capabilities, as dictated by fundamental 

communication principles like the Shannon-Hartley theorem. This makes mmWave an indispensable 

technology for supporting bandwidth-hungry 6G applications such as uncompressed high-definition video 

streaming, real-time holographic telepresence, and massive data uploads from distributed sensors. However, 

mmWave communication is not without its challenges. Signals at these high frequencies suffer from severe 

path loss, atmospheric absorption, and susceptibility to blockage by common materials, which can limit their 

propagation range and reliability. Overcoming these challenges necessitates advanced antenna technologies, 

such as massive Multiple-Input Multiple-Output (MIMO) and sophisticated beamforming techniques, to focus 

radio energy into narrow, steerable beams, thereby compensating for propagation losses and improving signal 

quality (Fayad, Cinkler, & Rak, 2024). The evolution of mmWave technology, coupled with intelligent network 
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management facilitated by AI, will be critical in harnessing its full potential to deliver the extreme performance 

required by 6G networks (Abdul-Wajid, 2025; Abou Yassin et al., 2025; Saeed et al., 2025; Yang et al., 2025). 

 

2. Millimeter-Wave Communications: Fundamentals and Advancements for 6G 

 The quest for higher data rates and increased capacity in wireless networks has consistently driven the 

exploration of new spectrum frontiers. Millimeter-wave (mmWave) frequencies, spanning from 30 GHz to 300 

GHz, represent a significant leap in this direction, offering unprecedented bandwidth availability compared to 

the congested sub-6 GHz bands traditionally used for mobile communications (Fayad, Cinkler, & Rak, 2024). 

While 5G systems have made initial forays into utilizing mmWave spectrum, 6G is poised to leverage these 

and potentially higher frequency bands (e.g., sub-Terahertz) even more extensively to realize its ambitious 

performance targets, including terabit-per-second data rates and ultra-low latency. The unique characteristics 

of mmWave propagation, however, present both substantial opportunities and formidable challenges that 

necessitate innovative technological solutions and intelligent network management, areas where Artificial 

Intelligence (AI) is expected to make significant contributions (Liu et al., 2025). 

 

 2.1. Characteristics and Propagation Challenges of mmWave Frequencies 

 Millimeter-wave signals possess very short wavelengths, which fundamentally influences their 

interaction with the environment. One of the most significant characteristics is the high free-space path loss, 

which increases quadratically with frequency (as per the Friis transmission equation). This means that, for a 

given transmission power and antenna gain, mmWave signals attenuate much more rapidly with distance 

compared to lower-frequency signals. Consequently, the coverage range of individual mmWave base stations 

is inherently smaller, leading to denser network deployments. Furthermore, mmWave signals are highly 

susceptible to atmospheric absorption, particularly by oxygen and water vapor, with specific absorption peaks 

at certain frequencies (e.g., around 60 GHz for oxygen). This atmospheric attenuation can further limit the 

effective communication range, especially in outdoor environments and during adverse weather conditions like 

rain, which causes significant scattering and absorption (Saoud et al., 2024). Another critical challenge is the 

high penetration loss through common building materials such as concrete, brick, and even foliage. Unlike sub-

6 GHz signals that can readily penetrate walls, mmWave signals are often blocked or severely attenuated, 

making indoor coverage from outdoor base stations difficult and necessitating dedicated indoor mmWave 

access points or repeaters. These signals also exhibit quasi-optical behavior, meaning they are prone to 

blockage by obstacles, including human bodies, leading to link instability and requiring sophisticated 

mechanisms for maintaining connectivity, such as multi-path routing and rapid beam switching. The 

combination of high path loss, atmospheric absorption, penetration losses, and sensitivity to blockage 

underscores the complexity of designing robust and reliable mmWave communication systems for 6G (Dogra 

et al., 2020). 

  

2.2. Enabling Technologies for mmWave in 6G: Beamforming and Massive MIMO 

 To counteract the severe propagation losses and other challenges associated with mmWave frequencies, 

advanced antenna technologies are indispensable. Beamforming and massive Multiple-Input Multiple-Output 

(MIMO) systems are cornerstone enabling technologies for effective mmWave communication in both 5G and 

future 6G networks (Fayad et al., 2024). Beamforming involves using antenna arrays to concentrate radiated 

power in a specific direction, creating narrow, high-gain beams pointed towards the intended receiver. This 

directional transmission significantly increases the received signal strength, thereby extending the 

communication range and improving link quality. The short wavelengths of mmWave signals allow for the 

integration of a large number of antenna elements into a physically small array, making highly directional 

beamforming feasible. Analog, digital, and hybrid beamforming architectures are employed, each with its own 

trade-offs in terms of performance, complexity, and power consumption. Massive MIMO takes this concept 

further by deploying antenna arrays with hundreds or even thousands of elements at the base station. This not 

only enables highly precise and adaptive beamforming but also supports spatial multiplexing, allowing multiple 

data streams to be transmitted simultaneously to one or more users in the same time-frequency resource, 

thereby dramatically increasing spectral efficiency and overall system capacity (Alsharif et al., 2022; Maier et 

al., 2021). For 6G, the evolution of massive MIMO is expected to include even larger antenna arrays, 

potentially leveraging new materials and metasurfaces (Reconfigurable Intelligent Surfaces - RIS) to further 

enhance beam control and coverage. The dynamic nature of the wireless channel and user mobility in mmWave 
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environments necessitates highly agile beam management, including initial beam acquisition, beam tracking, 

and rapid beam switching in case of blockage. This is where AI and machine learning techniques are becoming 

increasingly crucial, offering intelligent solutions for optimizing beamforming strategies in real-time, 

predicting channel variations, and ensuring seamless connectivity (Saoud et al., 2024). The synergy between 

advanced antenna systems like massive MIMO and AI-driven control mechanisms will be fundamental to 

unlocking the full potential of mmWave spectrum for 6G (Alsharif et al., 2022; Maier et al., 2021). 

3. Artificial Intelligence: The Engine for Optimizing 6G Networks 

 The unprecedented complexity, scale, and stringent performance demands of 6G networks necessitate 

a paradigm shift from traditional, often reactive, network management approaches to proactive, predictive, and 

autonomous operations. Artificial Intelligence (AI), with its diverse set of techniques for learning, reasoning, 

and decision-making, is emerging as the core engine to drive this transformation, enabling the optimization of 

6G systems across various layers and functionalities (Saoud et al., 2024). The integration of AI is not merely 

an add-on feature but a fundamental design principle for 6G, aiming to create an “AI-native” network that can 

intelligently adapt to dynamic conditions, manage vast resources efficiently, and deliver novel services with 

enhanced quality of experience. From the physical layer challenges in mmWave communications to the 

sophisticated service orchestration in the core network, AI offers powerful tools to address the inherent 

complexities and unlock the full potential of 6G technologies (T. Huang et al., 2019). 

  

3.1 Overview of AI Techniques Applicable to Wireless Communications 

A broad spectrum of AI techniques is being explored and adapted for applications in wireless 

communications, particularly in the context of 6G. Machine Learning (ML), a subfield of AI, is at the forefront, 

encompassing supervised learning, unsupervised learning, and reinforcement learning. Supervised learning 

algorithms, such as Support Vector Machines (SVMs) and Neural Networks (NNs), can be trained on labeled 

datasets to perform tasks like channel estimation, signal detection, and interference classification. Deep 

Learning (DL), a class of ML algorithms using deep neural networks with multiple layers, has shown 

remarkable success in handling complex, high-dimensional data, making it suitable for tasks like advanced 

beamforming, end-to-end communication system design, and sophisticated anomaly detection (Singh, 2025). 

Unsupervised learning techniques, including clustering and dimensionality reduction, are valuable for 

identifying patterns in unlabeled network data, such as traffic profiling and user behavior analysis. 

Reinforcement Learning (RL), particularly Deep Reinforcement Learning (DRL), enables agents to learn 

optimal policies through interaction with the environment, making it a promising approach for dynamic 

resource allocation, intelligent mobility management, and autonomous network control in 6G (Saoud et al., 

2024). Beyond these, other AI paradigms like federated learning (for privacy-preserving distributed model 

training), transfer learning (for leveraging knowledge from one task to another), and explainable AI (XAI) (for 

understanding and trusting AI decisions) are also gaining traction to address specific challenges in 6G network 

design and operation. The choice of AI technique often depends on the specific problem, the availability of 

data, computational constraints, and the desired level of autonomy and performance (Pennanen et al., 2024; 

Siddiky et al., 2024). 

  

 3.2 AI for Radio Resource Management in 6G mmWave Systems 

Radio Resource Management (RRM) is a critical function in wireless networks, responsible for the 

efficient allocation and utilization of scarce radio resources such as spectrum, power, and time slots. In 6G 

mmWave systems, RRM becomes significantly more complex due to the dynamic channel conditions, high 

user mobility, directional communication requirements, and the need to support diverse service requirements 

with varying Quality of Service (QoS) demands. AI, particularly ML and DRL, offers powerful solutions to 

tackle these RRM challenges. For instance, AI algorithms can be employed for intelligent spectrum sensing 

and dynamic spectrum sharing, enabling more efficient utilization of the vast mmWave bands. AI-driven power 

control mechanisms can optimize transmission power to minimize interference and conserve energy, which is 

crucial given the dense deployment of mmWave cells. In the context of beamforming, AI can facilitate real-

time beam selection, tracking, and adaptation to ensure robust links in highly dynamic environments (Saoud et 

al., 2024). DRL agents can learn optimal resource allocation policies that adapt to changing network loads and 

user demands, outperforming traditional rule-based or optimization algorithms in complex scenarios. 

Furthermore, AI can enable predictive RRM by forecasting traffic patterns, user mobility, and channel quality, 

allowing the network to proactively allocate resources and prevent congestion or service degradation. The 

integration of AI into RRM functions is essential for maximizing the efficiency, capacity, and reliability of 6G 

mmWave systems, ensuring that the network can dynamically adapt to the ever-changing wireless environment 

and user needs (John et al., 2025; Mahesh et al., 2023). 
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Figure 1: Comparison table of AI Techniques for mmWave Tasks 

 

4. AI-Powered Enhancements for mmWave Performance in 6G 

 The successful deployment and operation of millimeter-Wave (mmWave) communication in 6G hinges 

on overcoming its inherent propagation challenges, such as high path loss, susceptibility to blockage, and 

channel dynamicity (Quy et al., 2023). Artificial Intelligence (AI) offers a transformative toolkit to address 

these issues, providing intelligent mechanisms to enhance the performance, reliability, and efficiency of 

mmWave links. By leveraging AI’s capabilities in pattern recognition, prediction, and real-time optimization, 

6G networks can achieve robust and adaptive mmWave communication, paving the way for the realization of 

ultra-high data rates and seamless connectivity (Saoud et al., 2024). AI-powered enhancements span various 

aspects of mmWave systems, from sophisticated beam management to precise channel state information (CSI) 

acquisition and proactive interference mitigation. 

  

 4.1 Intelligent Beam Management and Tracking in Dynamic mmWave Environments 

 Effective beam management is paramount in mmWave systems due to their reliance on narrow, 

directional beams to compensate for high propagation losses. This includes initial beam alignment (finding the 

best beam pair between transmitter and receiver), beam tracking (maintaining alignment as users move or the 

environment changes), and beam switching (selecting a new beam path if the current one is blocked or 

degrades). Traditional beam management techniques can be slow and inefficient in highly dynamic 6G 

environments with dense user populations and frequent blockages. AI, particularly machine learning (ML) and 

deep reinforcement learning (DRL), provides powerful solutions for intelligent beam management. For 

instance, ML algorithms can learn from historical beam measurement data, user location information (if 

available), and environmental context (e.g., from sensors or cameras) to predict optimal beam directions, 

significantly reducing the overhead associated with exhaustive beam sweeping (Fayad, Cinkler, & Rak, 2024). 

DRL agents can be trained to make real-time decisions on beam selection and tracking, adapting to 

instantaneous channel conditions and user mobility patterns to maximize signal strength and minimize 

interruptions. AI can also enable proactive beam switching by predicting potential blockages based on 

contextual information, allowing the network to establish an alternative link before the current one fails. 

Furthermore, AI techniques can optimize beam patterns themselves, shaping beams to minimize interference 

to other users or to cover specific areas more effectively. The integration of AI into beam management systems 
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transforms them from reactive to predictive and adaptive, ensuring robust and resilient mmWave connectivity 

in complex 6G scenarios (Quy et al., 2023). 

 4.2 AI-driven Channel Estimation and Prediction for mmWave Links 

Accurate channel state information (CSI) is crucial for optimizing various communication tasks, 

including beamforming, resource allocation, and interference management. However, acquiring precise CSI in 

mmWave systems is challenging due to the high dimensionality of massive MIMO channels, the rapid channel 

variations caused by mobility and blockages, and the overhead associated with transmitting pilot signals. AI 

offers innovative approaches to improve channel estimation and prediction. Deep learning models, such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), can learn complex channel 

characteristics from partial or noisy measurements, enabling more accurate and efficient CSI acquisition 

(Saoud et al., 2024). For example, AI can be used for channel fingerprinting, where a database of channel 

characteristics at different locations is created, and ML algorithms predict the current channel based on location 

information and other sensor data. AI can also enhance channel prediction by learning temporal and spatial 

correlations in channel variations, allowing the network to anticipate future channel states and proactively 

adapt transmission parameters. This is particularly important for maintaining link quality for mobile users and 

for enabling predictive resource allocation. Moreover, AI can assist in compressing CSI feedback from users 

to base stations, reducing overhead in massive MIMO systems. By providing more accurate and timely CSI, 

AI-driven channel estimation and prediction techniques significantly contribute to enhancing the overall 

performance and reliability of 6G mmWave links, enabling more efficient use of spectrum and improved 

quality of service (L. Zhang et al., 2019). 

 4.3 A Conceptual Framework for AI–mmWave Integration in 6G Networks 

To transcend the purely descriptive nature of existing surveys, this work introduces a three-

dimensional taxonomy that classifies the convergence of Artificial Intelligence (AI) and millimeter-wave 

(mmWave) technologies in 6G systems. The framework is designed to capture where, how, and why AI 

intervenes across the mmWave communication stack (Abou Yassin et al., 2025; Chai et al., 2025; Cui et al., 

2025; Lloria et al., 2025; Siddiky et al., 2025). 

(A) Integration Layer Dimension  Where AI Operates 

1. Physical-Layer Intelligence: 

AI models enhance signal propagation, beamforming, and channel estimation by learning non-linear 

radio environments. 

Examples: Deep learning-based channel prediction, reinforcement learning for beam tracking. 

2. Network-Layer Intelligence: 

Focused on spectrum allocation, mobility management, and interference mitigation across cells. 

Examples: Graph neural networks for resource sharing, federated learning for coordinated RRM. 

3. Application-Layer Intelligence: 

Uses AI insights from user behavior and QoS demands to orchestrate network slicing and service 

provisioning. 

Examples: Semantic communications, adaptive XR and holographic streaming. 

 

(B) AI Function Dimension How AI Contributes 

1. Modeling and Prediction: 

Data-driven estimation of channel states, traffic, or mobility patterns. 

2. Optimization and Decision-Making: 

Reinforcement or evolutionary learning to tune system parameters (power, beam, scheduling) under 

constraints. 

3. Control and Adaptation: 

Real-time adaptation to environmental or traffic changes; AI acts as a closed-loop controller. 

 

(C) Deployment Hierarchy Dimension — Where the Intelligence Resides 

1. Device-Level AI: 

Lightweight on-device models enabling fast beam alignment and user tracking. 

2. Edge-Level AI: 

Cooperative intelligence across multiple access points or base stations with reduced latency. 
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3. Cloud/Core-Level AI: 

Global optimization using large-scale network data for long-term policy updates and training. 

(D) Cross-Dimensional Insight Each research work in AI-mmWave integration can be mapped as a 

tuple: 

(Layer,  Function,  Deployment) 
 

For example, Beam tracking using DRL at the edge → (Physical, Optimization, Edge). 

This framework highlights research concentration areas and exposes underexplored combinations such as 

(Network, Modeling, Device) or (Application, Control, Edge). 

(E) Significance of the Framework 

This taxonomy provides: 

• Comparative clarity: Easier benchmarking of AI solutions across layers. 

• Gap identification: Highlights unaddressed AI roles or deployment levels. 

• Research roadmap: Guides the design of integrated 6G architectures combining multiple intelligence 

layers. 

Visual Representation A 3D cube diagram with the three axes: 

• Integration Layer (x-axis) 

• AI Function (y-axis) 

• Deployment Hierarchy (z-axis) 
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Figure 2: A Conceptual Framework for AI–mmWave Integration in 6G Networks 

 

5. Key Performance Metrics for AI-Integrated 6G mmWave Networks 

 The advent of 6G, with its profound integration of Artificial Intelligence (AI) and extensive use of 

millimeter-Wave (mmWave) spectrum, necessitates a re-evaluation and expansion of traditional wireless 

network performance metrics. While foundational metrics such as data rate, latency, and reliability remain 

crucial, the unique capabilities and complexities introduced by AI-native architectures and the specific 

characteristics of mmWave communications call for a more nuanced and comprehensive set of Key 

Performance Indicators (KPIs). These KPIs must not only quantify the raw performance enhancements but also 

capture the intelligence, adaptability, and efficiency that AI brings to 6G systems (SNS JU, 2025). The goal is 

to establish a framework for evaluating how effectively AI-integrated 6G mmWave networks can meet the 

diverse and demanding requirements of future applications, ranging from immersive XR to critical control 

systems (Khan et al., 2025). 

 5.1. Defining Next-Generation Performance: Data Rates, Latency, and Reliability Targets 

 The baseline performance expectations for 6G significantly surpass those of 5G, pushing the boundaries 

of what is technologically feasible. For data rates, 6G aims for peak throughputs in the order of Terabits per 

second (Tbps) and user-experienced data rates of Gigabits per second (Gbps) (SNS JU, 2025; Fayad, Cinkler, 

& Rak, 2024). These ultra-high speeds are essential for applications like holographic telepresence, real-time 

digital twins, and high-fidelity XR. The SNS JU White Paper (2025) outlines specific targets, such as a peak 

data rate potentially reaching 1 Tbps and a user-experienced data rate of 1 Gbps under various conditions. 

Latency is another critical metric, with 6G targeting end-to-end (E2E) latencies in the sub-millisecond range 

(e.g., 0.1 ms to 1 ms) for ultra-reliable low-latency communications (URLLC) use cases, such as industrial 

automation, remote surgery, and tactile internet applications (SNS JU, 2025). This represents a tenfold or 

greater reduction compared to 5G. Jitter, or latency variation, also becomes a critical KPI, especially for real-

time services. Reliability and Availability targets are also exceptionally stringent, often aiming for “six nines” 

(99.9999%) or even higher availability for critical services, ensuring near-continuous connectivity and service 

uptime (SNS JU, 2025). This level of reliability is vital for safety-critical applications where network failures 

can have severe consequences. Other traditional KPIs, such as connection density (targeting up to 10 million 

devices per square kilometer), mobility (supporting speeds exceeding 500 km/h, potentially up to 1000 km/h 

for high-speed trains or aerial vehicles), and energy efficiency (aiming for a 10-100 fold improvement over 

5G), are also being pushed to new limits by 6G (SNS JU, 2025). These ambitious targets for conventional KPIs 

form the foundation upon which the more AI-specific metrics are built (Dogra et al., 2020; Khan et al., 2025; 

Liu et al., 2025). 

 

 5.2. Novel Performance Metrics for AI-Native 6G Systems: Adaptability, Learnability, & 

Efficiency  

 Beyond the traditional KPIs, the deep integration of AI into 6G networks necessitates new metrics to 

quantify the performance and effectiveness of the embedded intelligence. The SNS JU White Paper (2025) 

highlights several AI-related capabilities and the need for corresponding KPIs. Adaptability refers to the 

network’s ability to dynamically adjust its configuration and resource allocation in response to changing 

environmental conditions, traffic loads, user demands, or network faults. KPIs for adaptability might include 

the time taken to converge to an optimal state after a significant change, the range of conditions under which 

optimal performance can be maintained, or the reduction in human intervention required for network 

management. Learnability measures how quickly and effectively the AI models within the network can learn 

from new data and improve their performance over time. This could be quantified by the learning rate of AI 

algorithms, the accuracy improvement achieved with a given amount of training data, or the ability to 

generalize to unseen scenarios. Efficiency of AI Operations is also critical, encompassing metrics like the 

computational resources (e.g., processing power, memory) consumed by AI algorithms, the energy footprint 

of AI-driven network functions, and the processing time required for AI models to make decisions or 

predictions (SNS JU, 2025). For instance, an AI model for beam management might be evaluated not only on 

its accuracy but also on its inference latency and computational complexity. Furthermore, metrics related to 

explainability and trustworthiness of AI decisions will become increasingly important, especially for critical 

applications, to ensure that network operators can understand and rely on the autonomous actions taken by the 

AI. Other novel KPIs could include sensing accuracy and coverage (for ISAC capabilities), positioning 

accuracy and latency (for localization services), and context-awareness precision. These AI-centric KPIs, in 

conjunction with the enhanced traditional metrics, will provide a holistic view of the performance and 
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intelligence of 6G mmWave networks, guiding their design, optimization, and evolution (Iliev et al., 2021; 

Siddiky et al., 2025). 

 

 

6. AI Integration Across the 6G Network Architecture 

 The transformative potential of Artificial Intelligence (AI) in 6G is not confined to specific functionalities 

like radio resource management or beamforming; rather, it envisages a pervasive integration of intelligence 

across the entire network architecture, from the edge to the core. This holistic approach aims to create a truly 

AI-native 6G system, where AI algorithms and models are embedded at various network layers and 

components, enabling end-to-end optimization, automation, and the delivery of novel, context-aware services 

(Saoud et al., 2024). The architectural integration of AI spans the Radio Access Network (RAN), where 

intelligent base stations and user equipment (UE) will operate, and the Core Network (CN), which will leverage 

AI for sophisticated functions like predictive resource allocation, dynamic network slicing, and enhanced 

security. This pervasive intelligence is key to managing the complexity and scale of 6G and to unlocking its 

full capabilities (Iliev et al., 2021; Liu et al., 2025). 

 

 

6.1. AI in the Radio Access Network (RAN): Intelligent Base Stations and User Equipment 

 The 6G RAN is expected to be a highly dynamic and complex environment, characterized by ultra-dense 

deployments, the use of mmWave and higher frequency bands, massive MIMO systems, and diverse user 

requirements. AI will play a crucial role in optimizing RAN operations and enhancing performance at both the 

base station (gNB) and UE levels. Intelligent Base Stations will leverage AI for a multitude of tasks. As 

discussed earlier, AI-driven beam management, channel estimation, and interference mitigation will be critical 

for mmWave communications (Fayad, Cinkler, & Rak, 2024). Beyond these, AI can enable intelligent load 

balancing across cells, predictive handover management based on user mobility patterns and channel 

conditions, and dynamic cell shaping or sleeping to optimize coverage and energy consumption. AI algorithms 

can also facilitate self-organizing networks (SON) functionalities, allowing gNBs to autonomously configure, 

optimize, and heal themselves, reducing operational expenditure (OPEX). Intelligent User Equipment will also 

benefit from embedded AI. UEs can use AI for tasks like intelligent band selection, adaptive power control to 

prolong battery life, and local context awareness to request appropriate network services. AI at the UE can also 

assist in improving uplink transmission, for example, by predicting channel quality or selecting optimal 

transmission parameters. Furthermore, federated learning approaches can allow UEs to collaboratively train 

AI models without sharing their raw data, preserving privacy while contributing to global model improvement 

for tasks like traffic prediction or anomaly detection. The synergy between AI at the gNB and AI at the UE 

will create a more responsive, efficient, and personalized RAN experience in 6G (Rao et al., 2024). 

 

6.2. AI in the Core Network: Predictive Resource Allocation and Network Slicing 

 6G Core Network (CN) will be responsible for managing network-wide resources, orchestrating services, 

and ensuring end-to-end quality of service for a vast array of diverse applications. AI integration in the CN is 

essential for handling this complexity and enabling advanced functionalities. Predictive Resource Allocation 

is a key area where AI can provide significant benefits. By analyzing historical traffic data, user behavior 

patterns, and contextual information, AI models can forecast future resource demands across different network 

segments and services. This allows the CN to proactively allocate resources (e.g., compute, storage, bandwidth) 

to prevent congestion, minimize latency, and ensure that service level agreements (SLAs) are met. This is 

particularly important for dynamic network slicing, where different logical network slices are created to cater 

to specific service requirements (e.g., eMBB, URLLC, mMTC). AI-driven Network Slicing can automate the 

lifecycle management of network slices, including their creation, scaling, and termination, based on real-time 

demand and performance monitoring (SNS JU, 2025). AI can optimize resource allocation within and across 

slices, ensuring efficient utilization of network infrastructure while guaranteeing isolation and performance for 

each slice. Furthermore, AI can enhance CN security by enabling intelligent threat detection, anomaly 

identification (Singh, 2025), and automated response mechanisms. AI can also play a role in optimizing routing 

paths, managing network function virtualization (NFV) infrastructure, and providing insights for long-term 

network planning and evolution. The intelligence embedded in the 6G CN will be crucial for creating a flexible, 

programmable, and highly automated network capable of supporting the diverse and dynamic service landscape 

of the future (Hong et al., 2021; Maier et al., 2021). 

 

7. Statistical Insights and Mathematical Models for 6G mmWave with AI  

 The development and optimization of AI-integrated 6G mmWave networks rely heavily on a robust 

understanding of their expected performance, underpinned by statistical analysis and sound mathematical 

modeling. This section delves into the projected performance gains achievable through AI, supported by 
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statistical data, and outlines some of the foundational mathematical equations that model AI-driven mmWave 

optimization (Liu et al., 2025). The synergy between empirical data, statistical projections, and theoretical 

models is crucial for guiding research, development, and standardization efforts in the 6G era. The insights 

from sources like the SNS JU White Paper (2025) on 6G KPIs provide a quantitative basis for these 

discussions, while fundamental communication and AI theories offer the mathematical framework. 

 

7.1. Projected Performance Gains: Statistical Analysis of AI Impact on 6G KPIs  

 The integration of AI is anticipated to yield substantial improvements across a wide range of 6G Key 

Performance Indicators (KPIs). Statistical projections, often derived from simulations, testbed experiments, 

and extrapolations from current AI applications in 5G, paint a compelling picture of AI’s impact. For instance, 

in data rates and capacity, AI-driven dynamic spectrum management, intelligent beamforming, and interference 

coordination are projected to enhance spectral efficiency significantly. While specific quantifiable gains are 

still a subject of ongoing research, improvements in user-experienced data rates and overall system capacity 

are expected to be substantial, helping to achieve the target of 1 Gbps user-experienced data rate and 1 Tbps 

peak data rates (SNS JU, 2025). In terms of latency, AI-powered predictive resource allocation, proactive 

mobility management, and optimized scheduling algorithms can contribute to reducing end-to-end latency 

towards the sub-millisecond targets. For example, AI can predict network congestion or link degradation and 

reroute traffic or adjust resources proactively, minimizing delays. Singh (2025) highlights AI’s role in speeding 

up real-time detection and response in network security, which has analogous benefits for latency-sensitive 

communication. Regarding reliability and availability, AI-based anomaly detection, fault prediction, and self-

healing mechanisms are expected to improve network resilience. Studies like Singh (2025) show AI can boost 

anomaly detection rates by nearly 30% and reduce false alerts by about 25% in specific network contexts, 

which translates to more reliable operations. Similar gains are anticipated in maintaining the stringent 

99.9999%+ availability targets for critical 6G services. Furthermore, AI is projected to enhance energy 

efficiency by optimizing power usage in base stations and user devices through intelligent sleep modes, 

adaptive power control, and optimized computational load distribution for AI tasks themselves (SNS JU, 2025). 

Statistical analysis of these projected gains, often presented in research papers and industry white papers, 

provides crucial benchmarks for evaluating the effectiveness of different AI strategies and for justifying the 

investment in AI-native 6G architectures. 

 

7.2. AI-Driven Modeling and Optimization of Non-Linear mmWave/6G Systems 

 The optimization of 6G mmWave systems using AI is grounded in various mathematical principles and 

models. While a comprehensive list is extensive, some foundational equations illustrate the underlying 

concepts. The Shannon-Hartley Theorem remains a fundamental benchmark for channel capacity (Mahesh et 

al., 2023): 

C = B * log2(1 + S/N) 

Where C is the channel capacity, B is the bandwidth, and S/N is the signal-to-noise ratio. AI algorithms aim to 

optimize parameters that influence B (e.g., dynamic spectrum access) or S/N (e.g., intelligent beamforming to 

maximize S, interference mitigation to reduce N). For mmWave channel modeling, path loss equations are 

critical. A common model is (Khan et al., 2025): 

PL(d) [dB] = PL(d0) + 10 * n * log10(d/d0) + Xg 

Where PL(d) is the path loss at distance d, d0 is a reference distance, n is the path loss exponent (which varies 

significantly for mmWave and depends on the environment), and Xg is a term for shadowing. AI can help in 

accurately estimating ‘n’ or predicting Xg based on environmental context. In AI-driven beamforming, 

optimization problems are often formulated. For example, the objective might be to maximize the received 

signal strength at the UE, which can be expressed as maximizing |h^H * w|^2, where h is the channel vector 

and w is the beamforming weight vector. AI algorithms, particularly DRL, learn policies to find the optimal 

‘w’ in dynamic environments. The core of many machine learning algorithms involves minimizing a loss 

function. For instance, in supervised learning for channel estimation, the loss function L might be the Mean 

Squared Error (MSE) between the predicted channel state and the actual channel state (L. Zhang et al., 2019): 

L = (1/M) * Σ (h_pred - h_actual)^2 

Where M is the number of samples. Neural networks use gradient descent or its variants to minimize such loss 

functions by adjusting network weights. For resource allocation, AI might solve complex optimization 

problems, often formulated with an objective function (e.g., maximizing sum-rate, minimizing latency) subject 

to constraints (e.g., power limits, QoS requirements). These mathematical foundations, combined with 
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statistical data from network operations, enable AI to learn, adapt, and optimize 6G mmWave systems 

effectively (Pennanen et al., 2024; L. Zhang et al., 2019). 

Traditional analytical models—such as Shannon’s capacity 𝐶 = 𝐵log⁡2(1 + SNR)and log-distance path-loss 

𝑃𝐿(𝑑) = 𝑃𝐿0 + 10𝑛log⁡10(𝑑/𝑑0)—provide tractable but idealized descriptions of wireless links. However, 

real 6G mmWave/sub-THz channels exhibit severe non-linearities caused by multipath clustering, dynamic 

blockages, beam misalignment, and hardware impairments (e.g., phase-noise, non-linear power amplifiers). 

To cope with these complexities, AI models can learn or optimize system behavior directly from data, 

complementing or replacing closed-form expressions (B. Huang et al., 2025; Jin et al., 2022; Lavdas et al., 

2023; Xue et al., 2024; Y. Zhang et al., 2024). 

(a) Learning complex channel and propagation models 

Deep networks 𝑓𝜃(𝐱)can approximate the mapping from environmental/contextual features 𝐱(e.g., position, 

orientation, material maps) to channel responses 𝐡: 

𝐡̂ = 𝑓𝜃(𝐱),min⁡
𝜃

   ∥ 𝐡 − 𝑓𝜃(𝐱) ∥2
2. 

Unlike simple path-loss models, 𝑓𝜃captures non-linear effects such as scattering and blockage. Generative 

models (GANs, diffusion models) further synthesize spatial–temporal channel samples to augment scarce 

measurement data. 

(b) Learning to approximate end-to-end system mappings 

Instead of separately modeling each layer, AI can learn a direct mapping from system parameters to 

performance metrics, such as throughput or latency: 

𝐶̂ = 𝑔𝜙(𝐩), 𝐩 = [𝐵, 𝑃𝑡 , 𝑁𝑡 , 𝑁𝑟 , 𝑑, 𝜃, … ], 

where 𝑔𝜙replaces the analytical capacity formula with a learned surrogate that remains differentiable and can 

be embedded in optimization loops. This supports AI-based digital twins that emulate the wireless environment 

in real time. 

(c) AI-based optimization of non-convex objectives 

Beamforming, power control, and resource allocation in 6G are typically non-convex, high-dimensional 

problems: 

max⁡
𝐰

  𝑅(𝐰) = log⁡2  (1 +
∣ 𝐡𝐻𝐰 ∣2

𝜎2
),s.t. ∥ 𝐰 ∥2≤ 𝑃𝑡 . 

 

Reinforcement learning or neural approximators can learn policies 𝜋𝜃(state) → 𝐰that approach or surpass 

heuristic solvers, especially under dynamic channel conditions where gradient information is unavailable. 

(d) Hybrid model-driven + data-driven approaches 

Physics-informed neural networks (PINNs) or model-driven deep unfolding combine known equations with 

trainable components: 

𝐡(𝑘+1) = 𝐡(𝑘) − 𝛼𝑘∇𝐡 (𝐿phys(𝐡) + 𝐿data(𝐡; 𝜃)), 

 

ensuring consistency with physical laws while capturing residual non-linearities that classical models miss. 

This balances interpretability, generalization, and data efficiency. 

(e) Performance-driven learning objectives 

AI models can optimize utility functions directly: 

max⁡
𝜃

  𝔼𝐬 [𝑈(𝐬, 𝑓𝜃(𝐬))], 

 

where 𝑈may encode throughput–energy–latency trade-offs, fairness, or QoS constraints. Multi-objective 

learning frameworks or evolutionary algorithms handle competing KPIs. 

(f) Interpretation and physical insight 
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Explainable-AI tools (e.g., SHAP, saliency maps) reveal which input features dominate learned models, 

helping engineers derive new empirical formulations or simplified semi-analytical approximations suitable for 

standards work. 

Left Panel – Classical Modeling Right Panel – AI-Driven Modeling 

Inputs: Bandwidth B, Tx power, distance d → 

Equations (Shannon, PL) → Output throughput 

Inputs + environment/context → Neural model → 

Predicted KPI + Optimization loop 

Visual: icons of formulas and antennas, deterministic 

arrows 

Visual: neural-network graph, loop arrow indicating 

self-learning/optimization 

Color scheme: light gray & blue 
Color scheme: modern gradient (cyan → violet), 

signaling intelligence 

 

 

Figure 3: From Analytical to AI-Driven Modeling of mmWave/6G Systems 

 

8. Use Cases and Applications Enabled by AI in 6G mmWave Systems  

 The convergence of Artificial Intelligence (AI) with the vast bandwidth of millimeter-Wave (mmWave) 

spectrum in 6G networks is set to unlock a plethora of transformative use cases and applications that were 

previously confined to the realm of science fiction. These applications will leverage the ultra-high data rates, 

extremely low latency, massive connectivity, and inherent intelligence of 6G to create deeply immersive 

experiences, enable sophisticated autonomous systems, and revolutionize various industries (Saoud et al., 

2024). The ability of AI to manage the complexities of mmWave communication and to extract meaningful 

insights from the data traversing the network is a critical enabler for these futuristic services. From deeply 

engaging holographic communications to the seamless operation of city-wide intelligent infrastructure, AI-

driven 6G mmWave systems will redefine how humans interact with the digital and physical worlds. 

8.1. Immersive Experiences: Holographic Communications and Extended Reality (XR)  

 One of the most anticipated application domains for 6G is the realm of immersive experiences, 

encompassing holographic communications, augmented reality (AR), virtual reality (VR), and mixed reality 

(MR)—collectively known as Extended Reality (XR). Holographic communications aim to transmit high-
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fidelity, three-dimensional representations of people and objects in real-time, enabling truly immersive 

telepresence and remote collaboration. This requires enormous bandwidth (potentially terabits per second for 

high-resolution holograms) and extremely low latency (sub-millisecond) to ensure a seamless and natural 

interaction, demands that 6G mmWave is uniquely positioned to meet (SNS JU, 2025). AI will play a crucial 

role in compressing and decompressing holographic data, optimizing transmission over dynamic mmWave 

channels, and rendering complex 3D scenes efficiently. Extended Reality (XR) applications, which overlay 

digital information onto the physical world or create fully immersive virtual environments, will also be 

significantly enhanced by AI-integrated 6G. AI can personalize XR experiences, optimize rendering based on 

user gaze and context, and enable more natural interactions through voice and gesture recognition (SNS JU, 

2025). The high data rates of mmWave will support streaming of high-resolution XR content, while low latency 

will minimize motion-to-photon delay, crucial for preventing cybersickness and ensuring a realistic experience. 

AI will also be vital for managing the massive data flows and computational loads associated with widespread 

XR adoption, ensuring consistent quality of service across numerous users (Maier et al., 2021; Pennanen et al., 

2024). 

 

8.2. Intelligent Infrastructure: Smart Cities, Autonomous Systems, and Industrial IoT  

 AI-driven 6G mmWave networks will form the backbone of future intelligent infrastructure, enabling a 

new generation of smart city services, autonomous systems, and advanced Industrial Internet of Things (IIoT) 

applications. In Smart Cities, 6G will connect a vast ecosystem of sensors, devices, and vehicles, generating 

massive amounts of data. AI will be essential for processing this data to optimize urban services such as 

intelligent transportation systems (ITS), smart energy grids, public safety, and environmental monitoring 

(Saoud et al., 2024). For example, AI can analyze real-time traffic data from mmWave-connected vehicles and 

sensors to optimize traffic flow, reduce congestion, and enhance road safety. Autonomous Systems, including 

autonomous vehicles, drones, and robots, rely on continuous, high-reliability, low-latency communication for 

navigation, coordination, and remote operation. 6G mmWave, enhanced by AI-driven beam management and 

predictive connectivity, will provide the robust communication links necessary for safe and efficient 

autonomous operations. AI algorithms will also process sensor data from these autonomous systems, enabling 

them to perceive their environment, make intelligent decisions, and collaborate effectively. In the Industrial 

IoT (IIoT) domain, 6G will support advanced manufacturing processes, such as digital twins, predictive 

maintenance, and real-time process control. AI will analyze data from industrial sensors to optimize production 

lines, predict equipment failures before they occur (Singh, 2025), and enable highly flexible and reconfigurable 

manufacturing environments. The precise positioning capabilities of 6G mmWave, further enhanced by AI, 

will also be crucial for tracking assets and guiding robots in industrial settings. These applications highlight 

how AI and 6G mmWave will synergize to create more efficient, responsive, and intelligent infrastructure 

across various sectors (Kebede et al., 2021; Sun et al., 2025; Zamanipour, 2019; Zhu et al., 2024). 

 

9. Challenges and Future Research Directions  

 While the integration of Artificial Intelligence (AI) with millimeter-Wave (mmWave) technology in 6G 

networks promises a future of unprecedented connectivity and intelligent services, the path to realizing this 

vision is fraught with significant challenges. Addressing these hurdles and exploring new research frontiers 

will be crucial for the successful deployment and evolution of AI-driven 6G systems. The challenges span 

technological complexity, scalability, energy efficiency, standardization, security, and ethical considerations, 

each requiring concerted efforts from the research community, industry, and policymakers (Fayad, Cinkler, & 

Rak, 2024; Saoud et al., 2024). 

 

9.1. Addressing Complexity, Scalability, and Energy Efficiency of AI in 6G  

 The sheer complexity of managing AI models within the vast and dynamic 6G ecosystem is a primary 

challenge. Training, deploying, and maintaining sophisticated AI algorithms across a distributed network 

infrastructure, from the core to the edge and end-user devices, requires robust MLOps (Machine Learning 

Operations) frameworks tailored for telecommunications. Ensuring the interoperability of AI models from 

different vendors and managing their lifecycle (updates, retraining, retirement) in a seamless manner is a non-

trivial task. Scalability is another major concern. As the number of connected devices, users, and services in 

6G networks grows exponentially, AI systems must be able to scale efficiently to handle the massive influx of 

data and computational demands without performance degradation. This includes scaling the training data 

pipelines, the inference capabilities at the edge and in the cloud, and the communication overhead associated 

with distributed AI. Energy efficiency is a critical challenge, particularly given the sustainability goals of 6G 

(SNS JU, 2025). AI algorithms, especially deep learning models, can be computationally intensive and power-

hungry. Optimizing the energy consumption of AI processing at both the hardware and software levels, 

developing lightweight AI models suitable for resource-constrained devices, and designing energy-aware 

resource allocation for AI tasks are vital research areas. Future research should focus on developing novel AI 
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architectures that are inherently more efficient, exploring neuromorphic computing, and creating green AI 

solutions specifically for 6G networks (Mahesh et al., 2023). 

 

9.2. Standardization, Security, and Ethical Considerations for AI-driven 6G  

 Standardization is essential for ensuring global interoperability and fostering a competitive ecosystem for 

AI-driven 6G. This includes standardizing interfaces for AI model exchange, data formats for training and 

inference, and performance evaluation methodologies for AI-based network functions. Organizations like ITU, 

3GPP, and ETSI are actively working on these aspects, but consensus and timely standards development remain 

challenging given the rapid pace of AI innovation. Security in AI-driven 6G networks presents a multifaceted 

challenge. AI models themselves can be vulnerable to adversarial attacks (e.g., data poisoning, evasion attacks) 

that can compromise network performance or security. Conversely, AI can be a powerful tool for enhancing 

network security through intelligent threat detection and response (Singh, 2025). However, ensuring the 

robustness and resilience of both the AI systems and the network against sophisticated cyber threats is a critical 

research direction. This includes developing secure AI algorithms, robust defenses against adversarial machine 

learning, and privacy-preserving AI techniques (e.g., federated learning, homomorphic encryption) to protect 

sensitive user and network data. Ethical considerations are paramount as AI becomes more deeply embedded 

in communication networks that underpin many aspects of society. Issues such as algorithmic bias (e.g., unfair 

resource allocation or service discrimination), lack of transparency in AI decision-making (the “black box” 

problem), accountability for AI-induced errors or failures, and the potential for misuse of AI-powered 

surveillance capabilities need careful consideration and proactive governance. Future research must focus on 

developing explainable AI (XAI) techniques, fairness-aware AI algorithms, and robust ethical guidelines and 

regulatory frameworks to ensure that AI in 6G is deployed responsibly and for the benefit of all users (Al Kassir 

et al., 2022; Biliaminu et al., 2024; Q. Zhang & Wang, 2022). 

 

10. Conclusion: Charting the Path Towards an Intelligent and Connected Future  

 The journey towards the sixth-generation (6G) of wireless communication represents a monumental leap 

forward, promising not just an evolution of existing capabilities but a revolution in how we connect, compute, 

and interact with the world. At the heart of this transformation lies the symbiotic relationship between advanced 

millimeter-Wave (mmWave) technologies and the pervasive integration of Artificial Intelligence (AI). This 

article has explored the multifaceted dimensions of this synergy, from the fundamental principles and enabling 

technologies to the key performance metrics, architectural considerations, and transformative use cases. The 

path ahead is one of immense opportunities, but it is also paved with significant challenges that require 

innovative solutions and collaborative efforts across the global telecommunications ecosystem (Khan et al., 

2025; Mahesh et al., 2023). 

 

10.1. Synthesizing the Role of mmWave and AI in Realizing the 6G Promise  

 Millimeter-wave spectrum, with its vast available bandwidth, is indispensable for achieving the terabit-

per-second data rates and massive capacity envisioned for 6G. However, the inherent propagation challenges 

of mmWave necessitate sophisticated solutions like massive MIMO and highly adaptive beamforming. It is 

here that Artificial Intelligence emerges as a critical enabler, providing the intelligence to manage these 

complex mmWave systems effectively. AI-driven beam management, channel estimation, and interference 

mitigation are crucial for ensuring robust and reliable mmWave connectivity. Beyond the physical layer, AI is 

set to permeate every layer of the 6G architecture, from intelligent resource allocation in the RAN to predictive 

network slicing and automated security in the core network. This AI-native approach will transform 6G into a 

self-optimizing, self-healing, and self-configuring network, capable of adapting to dynamic conditions and 

delivering a diverse range of intelligent services with unprecedented quality of experience. The performance 

metrics for 6G, therefore, extend beyond traditional measures to include AI-specific indicators such as 

adaptability, learnability, and operational efficiency, reflecting the network’s inherent intelligence. The 

synergy between the raw power of mmWave and the adaptive intelligence of AI is the cornerstone upon which 

the ambitious vision of 6G—a vision of ubiquitous, intelligent, and immersive connectivity—will be built 

(Khan et al., 2025; Mahesh et al., 2023; Pennanen et al., 2024). 

 

10.2. Concluding Remarks on the Transformative Potential of 6G Evolution  

 The evolution towards 6G, powered by mmWave and AI, holds the potential to redefine industries, 

enhance human capabilities, and address pressing societal challenges. From holographic communications and 

truly immersive XR experiences to intelligent autonomous systems and hyper-connected smart cities, the 

applications enabled by 6G will be transformative. However, realizing this potential requires a concerted focus 

on overcoming the technical hurdles related to complexity, scalability, and energy efficiency, as well as 

addressing the critical aspects of standardization, security, and ethical AI deployment. Future research must 

continue to push the boundaries of AI algorithms, mmWave hardware, and network architectures, while 
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fostering a global dialogue on the responsible development and governance of these powerful technologies. By 

charting a path that balances innovation with responsibility, the global community can harness the 

transformative power of AI-integrated 6G mmWave networks to create a more intelligent, connected, and 

sustainable future for all. The journey is complex, but the destination—a seamlessly interconnected world 

augmented by pervasive intelligence—is a compelling one that warrants our collective dedication and ingenuity 

(Singh, 2025; SNS, 2021). 

 

11. Conclusion 

 The integration of Artificial Intelligence (AI) with 6G millimeter-wave (mmWave) technology is set to 

revolutionize wireless communication by enabling ultra-fast, low-latency, and highly intelligent networks. This 

convergence facilitates transformative applications such as immersive holographic communication, Extended 

Reality (XR), autonomous systems, smart city infrastructure, and advanced Industrial IoT (IIoT). AI enhances 

the performance, adaptability, and scalability of mmWave systems through intelligent beamforming, resource 

management, and real-time decision-making. Moreover, the AI-native design of 6G will allow networks to 

self-optimize, self-heal, and deliver personalized services with unprecedented quality of experience. While the 

potential is vast, realizing this vision requires addressing complex technological, operational, and ethical 

challenges. The convergence of millimeter-wave (mmWave) technology and artificial intelligence (AI) marks 

a defining milestone in the evolution toward 6G networks. This survey has illustrated how AI-driven solutions 

can overcome the physical and architectural challenges of mmWave systems by enabling intelligent beam 

management, adaptive channel estimation, and dynamic resource optimization. Together, these advancements 

promise to deliver the high capacity, ultra-low latency, and context-aware intelligence that characterize the 

envisioned 6G ecosystem. Despite its promise, this integration remains in a formative stage with notable 

limitations. The absence of large-scale, standardized datasets for training AI models in realistic wireless 

environments restricts model generalization and transferability. Additionally, computational complexity, 

energy consumption, and interpretability remain unresolved challenges that hinder AI deployment at the 

network edge and user equipment. The lack of unified frameworks for evaluating AI-centric Key Performance 

Indicators (KPIs)—such as adaptability and learnability—also limits objective performance benchmarking. 

Moreover, issues related to security, privacy, and ethical governance of data-driven wireless systems must be 

addressed to ensure the trustworthiness of future AI-empowered infrastructures. Future research should 

therefore emphasize three main directions: (1) the development of open, federated, and privacy-preserving 

datasets and platforms to support reproducible research; (2) the design of lightweight, explainable AI models 

optimized for distributed and energy-constrained network environments; and (3) the formulation of 

standardized methodologies for evaluating AI-native KPIs alongside conventional network metrics. Further 

exploration of emerging paradigms—such as semantic communications, reconfigurable intelligent surfaces, 

and joint sensing–communication frameworks—will also be essential in shaping a resilient and sustainable 6G 

landscape. In conclusion, the symbiotic evolution of mmWave communications and AI represents not just a 

technological transition but a paradigm shift toward networks that learn, adapt, and self-optimize. Realizing 

this vision will require continued interdisciplinary collaboration, rigorous experimentation, and ethical 

stewardship to ensure that 6G becomes a truly intelligent, inclusive, and transformative global communication 

fabric. 

 

12. Future Work 

 To overcome current limitations and fully realize the vision of AI-integrated 6G mmWave networks, 

future research and development should focus on the following areas: Lightweight and Energy-Efficient AI 

Models: Develop new AI architectures optimized for low power consumption and real-time operation, 

especially at the edge and on mobile devices. AI Standardization and Interoperability: Collaborate globally to 

define common standards for AI interfaces, data formats, and performance benchmarks in 6G networks. Secure 

and Privacy-Preserving AI: Explore techniques like federated learning, differential privacy, and adversarial 

robustness to enhance AI security and protect user data. Explainable and Fair AI: Advance explainable AI 

(XAI) techniques to improve transparency and accountability, while ensuring fairness in resource allocation 

and decision-making. AI-Driven Network Automation: Investigate self-organizing network architectures 

where AI autonomously manages configuration, fault recovery, and optimization in real-time. Cross-Layer AI 

Integration: Enable seamless collaboration between AI modules across the physical, network, and application 

layers for end-to-end performance improvements. Testbeds and Real-World Trials: Establish large-scale 

experimental platforms to evaluate the performance, reliability, and societal impact of AI-powered 6G 

applications in real-world settings. Future research should focus on overcoming the above challenges through 

a series of targeted strategies. First, developing open, federated, and privacy-preserving datasets tailored to 

mmWave and hybrid 6G scenarios will enable reproducible and collaborative research while ensuring data 

confidentiality. Second, designing lightweight, explainable, and energy-efficient AI architectures optimized 

for distributed edge environments will reduce latency and improve sustainability. Third, establishing 
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standardized frameworks for measuring AI-native KPIs alongside traditional network metrics—such as 

throughput, latency, and reliability—will allow fair performance comparison and facilitate integration into 

emerging 6G standards. Further exploration should also extend toward novel paradigms, including 

reconfigurable intelligent surfaces (RIS), integrated sensing and communication (ISAC), semantic 

communication, and intelligent reflecting environments, where AI can dynamically coordinate resource 

allocation and environmental adaptation. Finally, embedding security-aware and ethically guided AI 

mechanisms—such as robust federated learning, adversarial defense models, and transparent decision 

systems—will be essential to ensure fairness, resilience, and trust in next-generation wireless networks. In 

summary, advancing AI–mmWave symbiosis requires not only technological innovation but also a holistic 

approach combining data availability, algorithmic transparency, and regulatory alignment to achieve the full 

vision of intelligent, self-optimizing, and human-centric 6G networks. 

 

13. Limitations 

Technological Complexity: Deploying and managing distributed AI across large-scale, dynamic networks is 

highly complex and requires robust MLOps frameworks and real-time orchestration. Scalability Issues: As 

device and data volumes grow, scaling AI algorithms and infrastructure efficiently remains a major challenge, 

particularly in edge environments. Energy Consumption: AI models, especially deep learning networks, can 

be computationally expensive and energy-intensive, conflicting with 6G's sustainability goals. Security 

Vulnerabilities: AI systems are susceptible to adversarial attacks and data manipulation, potentially 

undermining network performance and trust. Standardization Gaps: There is a lack of unified standards for AI 

integration in telecommunications, which hinders interoperability and widespread adoption. Ethical Concerns: 

Issues like algorithmic bias, transparency ("black box" AI), and privacy risks are critical and require proactive 

governance. Although the integration of millimeter-wave (mmWave) technology and artificial intelligence (AI) 

offers transformative potential for 6G systems, several limitations remain evident. The current research 

landscape lacks large-scale, realistic, and standardized datasets that capture the diverse propagation 

characteristics, blockage effects, and mobility patterns inherent to mmWave environments. This data scarcity 

limits the robustness and generalization of AI models trained under idealized or simulated conditions. 

Additionally, the computational complexity and energy demands of deep learning algorithms pose challenges 

for deployment at edge devices and user equipment, where processing and power resources are constrained. 

The absence of unified frameworks for assessing AI-native Key Performance Indicators (KPIs)—including 

adaptability, learnability, and operational efficiency—hampers consistent performance benchmarking across 

studies. Furthermore, data privacy, adversarial attacks, and model interpretability remain unresolved concerns 

that threaten both the security and trustworthiness of AI-driven mmWave systems. Ethical considerations, 

particularly related to autonomous decision-making and fairness in data utilization, are also insufficiently 

addressed. Collectively, these limitations highlight the pressing need for methodological standardization, data 

governance, and computational efficiency within the AI–mmWave research ecosystem. 
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 An This study introduces a numerical approach that converges uniformly for 

a convection-diffusion problem with singular perturbations. The collocation 

approach is used, and the derivative gets interpreted in the Caputo sense. 

Subsequently, a numerical scheme that converges uniformly is formulated 

using the Said-Ball collocation technique. Then, the primary issue may be 

simplified to a matrix equation that relates to a set of linear algebraic 

equations.  Following the resolution of this system, the approximation of the 

provided problem's unknown Said-Ball coefficients is determined. The 

computational result is verified to be in agreement with the theoretical 

expectation and to be more precise than certain established numerical methods 

through numerical experimentation. 
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  الخلاصة 

ويفُ  التجميع،  منهج  يسُتخدم  الشاذة.  الحراري والانتشار مع الاضطرابات  الحمل  بانتظام لمسألة  يتقارب  الدراسة منهجًا عددياً  سر تقدم هذه 

  بول. ثم، يمكن تبسيط المسألة-المشتق وفقاً لمفهوم كابوتو. بعد ذلك، تصُاغ خوارزمية عددية تتقارب بانتظام باستخدام تقنية التجميع سعيد

النظام، يتم تحديد تقريب معاملات سعيد الجبرية الخطية. بعد حل هذا  بول  - الأساسية إلى معادلة مصفوفية ترتبط بمجموعة من المعادلات 

نظرية  المجهولة للمسألة المطروحة. وقد تم التحقق من صحة النتيجة الحسابية من خلال التجارب العددية، حيث تبين أنها تتوافق مع التوقعات ال

 أنها أكثر دقة من بعض الطرق العددية المعروفة.و

 

1. INTRODUCTION 

The The second-order one-dimensional parabolic equation, as stated in [1-4], is the primary focus of this 

work. 

𝑢𝜏(𝜍, 𝜏) − 𝜀𝑢𝜍𝜍(𝜍, 𝜏) + 𝑎(𝜍)𝑢𝜍(𝜍, 𝜏) + 𝑏(𝜍)𝑢(𝜍, 𝜏) = 𝐹(𝜍, 𝜏),0 ≤ 𝜍 ≤ 𝐿, 0 ≤ 𝜏 ≤ 𝑇.      (1) 

where 𝑎(𝜍), 𝑏(𝜍)and 𝐹(𝜍, 𝜏) known real‐ valued functions and 𝜀 < 1is a known positive perturbation 

parameter that is generally taken to be close to zero. Equ. (1), known as the one‐ dimensional singularly 

perturbed convection-diffusion equation, will be considered under the initial condition (IC) 

𝑢(𝜍, 0) = 𝑔(𝜍),0 ≤ 𝜍 ≤ 𝐿.        (2) 

and the boundary conditions (BCs) 

𝑢(0, 𝜏) = ℎ0(𝜏), 𝑢(𝐿, 𝜏) = ℎ1(𝜏),0 ≤ 𝜏 ≤ 𝑇,       (3) 

where 0,  g h and 1h , as given by the initial and boundary conditions (2) and (3). 

Consequently, various authors have developed an interest in acquiring its approximate solutions via the use 

of diverse numerical approaches. The convection–diffusion-reaction process consists of three distinct stages 

[5]. During the first stage, there is a transfer of convection and materials across different regions. In the second 

phase, there is a movement of diffusion and materials from an area with a high concentration to an area with a 
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low concentration. The last stage is a process where decay, absorption, and the interaction of substances with 

other components take place.  

Modeling difficulties in many scientific domains, including biology, physics, and engineering, may be 

rather complex due to the one-dimensional parabolic convection-diffusion equation, which is a partial 

differential equation [6–12].  Therefore, a number of scholars have set out to find numerical solutions to these 

difficulties by using various numerical techniques:  

A Laguerre collocation approach was suggested by Gürbüz in order to resolve the 1D parabolic convection 

equation in [10]. A matrix-vector equation is transformed in this technique using the provided equation and 

conditions. Then, by employing collocation points, the Laguerre coefficients are derived from the solution of 

this matrix-vector equation. Lima et al. introduced a finite difference approach in [13] for both linear and 

nonlinear convection–diffusion–reaction models in order to get numerical results. The authors primarily 

concentrate on the examination of convergence, using errors and assessing the accuracy of the procedure. The 

authors in [14] presented an optimum q-homotopy analysis approach for obtaining an approximate solution to 

the convection-diffusion problem.  Additionally, the convection-diffusion-reaction has been addressed using a 

number of different approaches, including the following: the homotopy perturbation method [15], the finite 

element method [16], the Runga Kutta method [17], the Bessel collocation method [2], the weighted finite 

difference [18], a hybrid approximation scheme [4], and the uniform convergent numerical method [19]. The 

Said-Ball collocation technique is used in this investigation, where it is the first time to be used to solve 

singularly perturbed parabolic convection-diffusion equation. 

The paper is structured as follows: The already mentioned Said-Ball polynomial is discussed in Section 2. 

The paper illustrates the numerical scheme in Section 3. Section 4 of the paper provides a detailed explanation 

of a method called residual correction, which aims to enhance an existing solution. This method can also be 

utilized to estimate the error of the solution. In Section 5, two numerical examples are examined to exemplify 

the process of residual correction and to make comparisons with other methods. Section 6 contains the final 

remarks regarding the paper. 

2. Said-Ball polynomials (SBP) 

In this section, we will examine how the SBP may be utilized to create the operational matrix used to solve 

the 2nd order one-dimensional parabolic convection–diffusion equation under consideration. SBP is one of two 

generalized Ball polynomials (Said-Ball and Wang-Ball) of indeterminate degree established in the '80s [20, 

21], both of which have the hallmark property of strong generalization among Ball polynomials. To be more 

specific, the Ball polynomial was first described in [21, 22], which defines a cubic polynomial as: 

(1 − 𝜍)2, 2𝜍(1 − 𝜍)2, 2𝜍2(1 − 𝜍), 𝜍2                  (4) 

according to the degree's parity, the SBP basis function of degree 𝑟, indicated by 𝑆𝑘
𝑟(𝜍), is defined [23-27]. 

That is, when 𝑟 is odd, 𝑆𝑘
𝑟(𝜍)is defined as 

𝑆𝑘
𝑟(𝜍) =

{
 
 

 
 (

𝑟 − 1

2
+ 𝑘

𝑘
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when 𝑟 is odd and 
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when 𝑟 is even. 

We can write the Said-Ball curve of degree 𝑟, denoted by𝑆𝑘
𝑟(𝜍), with 𝑚 + 1control points, denoted by 

{𝑣𝑘}𝑘=0
𝑟 , can be written in terms of the power basis as follows [28] 

𝑆(𝜍) = ∑ ∑ 𝑣𝑘
𝑟
𝑙=0

𝑟

𝑘=0
𝑚𝑘,𝑙𝜍

𝑙 , 0 ≤ 𝜍 ≤ 1                       (6)  

where 
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𝑚𝑘,𝑙 =

{
  
 

  
 (−1)(𝑙−𝑘) (

𝑘 + ⌊
𝑟

2
⌋

𝑘
) (
⌊
𝑟

2
⌋ + 1

𝑙 − 𝑘
) , for  0 ≤ k ≤ ⌊

𝑟

2
⌋ ,

(−1)(𝑙−𝑘) (
𝑟
𝑘
) (

𝑘
𝑙 − 𝑘

) , for  k=
𝑟

2
,

(−1)(𝑙−⌊
𝑟

2
⌋−𝑘)

(
⌊
𝑟

2
⌋ + 𝑟 − 𝑘

𝑟 − 𝑘
)(

𝑟 − 𝑘

𝑙 − ⌊
𝑟

2
⌋ − 1)

, for  ⌊
𝑟

2
⌋ + 1 ≤ 𝑘 ≤ 𝑟.

       (7) 

and  ⌊𝜍⌋ and ⌈𝜍⌉ denote the greatest integer less than or equal to 𝜍 and the least integer greater than or equal 

to 𝜍 respectively 

Definition:  

The Said-Ball monomial matrix is [28] 

𝑀 =

[
 
 
 
 
𝑚00 𝑚01 ⋯ ⋯ 𝑚0𝑁

𝑚10 𝑚11 ⋯ ⋯ 𝑚1𝑁

⋮ ⋮ ⋱ ⋮
⋮

𝑚𝑁0

⋮
𝑚𝑁1

⋱
⋯

⋱
⋯

⋮
𝑚𝑁𝑁]

 
 
 
 

(𝑁+1)×(𝑁+1)

      (8) 

where 𝑚𝑖,𝑗is given in Eq. (7) 

3. METHOD OF SOLUTION 

In this section, we will outline the procedure to be used to solve Equation (1) subject to initial and boundary 

conditions (2) and (3). 

Firstly, we make the assumption that the solution in the truncated Said-Ball form 

𝑢(𝜍, 𝜏) ≅ 𝑢𝑁(𝜍, 𝜏) = ∑ ∑ 𝑆𝑘
𝑚+1,𝑛+1(𝜍, 𝜏)𝑁

𝑛=0
𝑁
𝑚=0 𝑎𝑚𝑛     (9) 

where 𝑆𝑚+1,𝑛+1(𝜍, 𝜏) = 𝑆𝑚+1(𝜍)𝑆𝑛+1(𝜏) and 𝑢𝑁(𝜍, 𝜏) is the approximate solution of Eq. (1) 𝑎𝑚,𝑛, 𝑚, 𝑛 =

0,1, … , 𝑁, are the unknown Said-Ball coefficients, 𝑁 is chosen as any positive integer such that 𝑁 ≥ 1. 

We can write 

    𝑆(𝜏) = 𝑋(𝜏)𝑀𝑇                                   (10)  

Where  𝑋(𝜏) = [1 𝜏 𝜏2 ⋯ 𝜏𝑁] and 𝑀 given in Eq. (8). Then, by replacing the expression (10) into 

(9), we obtain the following matrix relations: 

𝑢𝑁(𝜍, 𝜏) = 𝑋(𝜍)𝑀
𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ 𝐴                        (11)  

where 

𝑋̅(𝜏) = 𝐼𝑁 ⊗𝑋(𝜏),𝑀𝑇̅̅ ̅̅ (𝜏) = 𝐼𝑁 ⊗𝑀𝑇 , 

𝐴 = [𝑎0,0 𝑎0,1 ⋯ 𝑎0,𝑁 ⋯ 𝑎𝑁,0 𝑎𝑁,1 ⋯ 𝑎𝑁,𝑁]𝑇 

On the other hand, the relation between the matrix 𝑋(𝜏) and its derivatives   𝑋′(𝜏)    and 𝑋′′(𝜏) are 

𝑋′(𝜏) = 𝑋(𝜏)𝛬, 𝑋′′(𝜏) = 𝑋(𝜏)𝛬2                          (12)  

where  

                                      𝛬 = {
𝑖 , 𝑗 = 𝑖 + 1.
0 , otherwise.

                        (13)  

Next, we arrange the matrix relations of the derivatives 𝑢𝜏, 𝑢𝜍𝜍 and 𝑢𝜍 by using equations (10) - (12) in the 

following manner. 

𝑢𝑡(𝜍, 𝜏) = 𝑋(𝜍)𝑀𝑇𝑋̅(𝜏)𝛬̅𝑀𝑇̅̅ ̅̅ 𝐴,

𝑢𝜍(𝜍, 𝜏) = 𝑋(𝜍)𝛬𝑀
𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ 𝐴,

𝑢𝜍𝜍(𝜍, 𝜏) = 𝑋(𝜍)𝛬2𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ 𝐴,

                           (14)  

By substituting the relations (14) into Eq. (1) we have the fundamental matrix form for Eq. (1): 

{𝑋(𝜍)𝑀𝑇𝑋(𝜏)𝛬𝑀𝑇 − 𝜀𝑋(𝜍)𝛬2𝑀𝑇𝑋(𝜏)𝑀𝑇 

                + 𝑎(𝜍)𝑋(𝜍)𝛬𝑀𝑇𝑋(𝜏)𝑀𝑇 + 𝑏(𝜍)𝑋(𝜍)𝑀𝑇𝑋(𝜏)𝑀𝑇} 𝐴 = 𝐹(𝜍, 𝜏),0 ≤ 𝜍 ≤ 𝐿, 0 ≤ 𝜏 ≤ 𝑇.              (15) 
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or shortly    

𝑊𝐴 = 𝐹or  [𝑊;𝐹] 

where 

𝑊 = 𝑋(𝜍)𝑀𝑇𝑋̅(𝜏)𝛬̅𝑀𝑇̅̅ ̅̅ − 𝜀𝑋(𝜍)𝛬2𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ + 𝑎(𝜍)𝑋(𝜍)𝛬𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅ + 𝑏(𝜍)𝑋(𝜍)𝑀𝑇𝑋̅(𝜏)𝑀𝑇̅̅ ̅̅  

By putting the collocation points, for 𝜍 ∈ [0, 𝐿], 𝜏 ∈ [0, 𝑇] 

𝜍𝑖 =
1

2
−

1

2
cos (

𝑖𝜋

𝑁+1
) , 𝜏𝑗 =

1

2
−

1

2
cos (

𝑗𝜋

𝑁+1
) , 𝑖, 𝑗 = 0,1, … , 𝑁.                                            (16)  

into Eq. (15), then we have  

𝑊 = [𝑊1 𝑊2 ⋯ 𝑊𝑁]
𝑇 , 

𝑊𝑖 = [𝑊(𝜍𝑖 , 𝜏0) 𝑊(𝜍𝑖 , 𝜏1) ⋯ 𝑊(𝜍𝑖 , 𝜏𝑁)]
𝑇 

𝐺 = [𝐺1 𝐺2 ⋯ 𝐺𝑁]
𝑇 , 

𝐺𝑖 = [𝐺(𝜍𝑖, 𝜏0) 𝐺(𝜍𝑖, 𝜏1) ⋯ 𝐺(𝜍𝑖 , 𝜏𝑁)]
𝑇 , 𝑖 = 0,1,⋯ ,𝑁. 

By replacing the relationship (16) in equations (2)-(3), we get the matrix representation. 

𝑢(𝜍, 0) = 𝑋(𝜍𝑖)𝑀
𝑇𝑋̅(0)𝑀𝑇̅̅ ̅̅ 𝐴 = 𝑔(𝜍𝑖) 

for the initial condition (2) and 

𝑢(0, 𝜏) = 𝑋(0)𝑀𝑇𝑋̅(𝜏𝑖)𝑀
𝑇̅̅ ̅̅ 𝐴 = ℎ0(𝜏𝑖), 

𝑢(𝐿, 𝜏) = 𝑋(𝐿)𝑀𝑇𝑋̅(𝜏𝑖)𝑀
𝑇̅̅ ̅̅ 𝐴 = ℎ1(𝜏𝑖) 

for the boundary conditions (3), where 𝑖 = 0,1,⋯ ,𝑁, or in short form 

                  𝑈1𝐴 = 𝐺 or [𝑈1; 𝐺], 𝑈2𝐴 = 𝐻0 or [𝑈2; 𝐻0] and  𝑈3𝐴 = 𝐻1 or  [𝑈3; 𝐻1]        (17)  

In order to get the solution to equation (1) given the conditions (2)-(3), an augmented matrix was created 

by substituting the row matrices (15) with the(𝑁 + 1) × (𝑁 + 1) rows from the matrix (17). This results in the 

formation of a new augmented matrix. 

[𝑊̃; 𝐺̃] = [

𝑊; 𝐹
𝑈1; 𝐺
𝑈2; 𝐻0
𝑈3; 𝐻1

] 

Then we solve the system 𝐴 = (𝑊̃)
−1
𝐺̃if 𝑟𝑎𝑛𝑘(𝑊̃) = 𝑟𝑎𝑛𝑘(𝑊̃; 𝐺̃) = (𝑁 + 1)2and A is uniquely 

determined. So, the coefficients of the unknown Said-Ball polynomials are determined using this method. 

Therefore, the solution to 𝑢𝑁(𝑥, 𝑡) is approximately determined in the form of equation (9). 

4. ERROR ANALYSIS 

The estimated error for equation (1) is provided in this section; it enhances the accuracy of the solution for 

the Said-Ball polynomials. The resultant equation has to be satisfied approximately, that is, for 𝜍 = 𝜍𝑟 , 0 ≤
𝜍𝑟 ≤ 1 and 𝜏 = 𝜏𝑠, 0 ≤ 𝜏𝑠 ≤ 1. 

𝐸𝑁(𝜍𝑟 , 𝜏𝑠) = |𝑢𝜏(𝜍𝑟 , 𝜏𝑠) − 𝜀𝑢𝜍𝜍(𝜍𝑟 , 𝜏𝑠) + 𝑎(𝜍𝑟)𝑢𝜍(𝜍𝑟 , 𝜏𝑠) + 𝑏(𝜍𝑟)𝑢(𝜍𝑟 , 𝜏𝑠) − 𝐹(𝜍𝑟 , 𝜏𝑠)| ≅ 0 

Where 𝐸𝑁(𝜍𝑟 , 𝜏𝑠) ≤ 10−𝑘𝑟𝑠 = 10−𝑘 ( k is positive integer). If max10 10rsk k− −= is prescribed, then the  

truncation limit N is increased until the difference 𝐸𝑁(𝜍𝑟 , 𝜏𝑠)at each of the points becomes smaller than the 

prescribed 10 .k−
 On the other hand, we use absolute error (AE) for measuring errors. If ( , )Nu    is an 

approximation to ( , )u    the absolute error is |𝑒𝑁(𝜍, 𝜏)| = |𝑢(𝜍, 𝜏) − 𝑢𝑁(𝜍, 𝜏)|. To facilitate the comparison 

of our findings with those of alternative approaches, we utilize 2L  norm L  and norm, which are denoted as 

follows: 
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‖𝑒𝑁(𝜍, 𝜏)‖2 = (∫∫(𝑒𝑁(𝜍, 𝜏))
2
𝑑𝜍𝑑𝜏

𝐿

0

𝑇

0

)

1 2⁄

,

‖𝑒𝑁(𝜍, 𝜏)‖∞ = max
(𝜍,𝜏)∈[0,𝐿]×[0,𝑇]

|𝑒𝑁(𝜍, 𝜏)|.

 

5. NUMERICAL EXAMPLES 

The procedure described in Section 3 is implemented on two illustrative problems in this section. Every 

necessary calculation has been performed using MATLAB R2021a 

Example 1. The first example in our study is the following equation [1, 3, 4] 

𝑢𝜏 − 𝜀𝑢𝜍𝜍 + (2𝜍 + 1)𝑢𝜍 + 𝜍
2𝑢 =

𝑒𝜍+𝜏

𝜀
(𝜍2 + 2𝜍 + 2 − 𝜀),                                      (18) 

with the initial condition 

𝒖(𝝇, 𝟎) =
𝒆𝝇

𝜺
, 𝟎 ≤ 𝝇 ≤ 𝟏,                 (19)                                                    

and the boundary conditions 

𝑢(0, 𝜏) =
𝑒𝜏

𝜀
, 𝑢(1, 𝜏) =

𝑒𝜏+1

𝜀
, 0 ≤ 𝜏 ≤ 1.                                 (20) 

The exact solution of the present problem is 𝑢(𝜍, 0) =
𝑒𝜍+𝜏

𝜀
. 

We have utilized the approach outlined in Section 3 to examine Example 1, considering various options for 

𝑁 and employing multiple values for the perturbation parameter 𝜀. Figure 1 shows the approximate solutions 

𝑢6(𝜍, 𝜏) for four different 𝜀 values. 

To facilitate comparison with alternative collocation methods, we have computed the 𝐿2 and 𝐿∞ norms of 

the AE for 𝑁 values ranging from 5 to 10. The values are presented in Table 1. While, Table 2 displays the  AE 

for example 1, with 𝑁 = 10 and 𝜀 = 10−1, across various values of 𝜏. 

TABLE 1 Comparison of the 𝐿∞error of the AE function |𝑒𝑁(𝜍, 𝜏)|for different values of N andin Example 1    

PM  𝑁 =5 𝑁 =6 𝑁 =7 𝑁 =8 𝑁 =9 𝑁 =10 

𝜀 =1/10 8.4771E-04 4.4025E-06 3.0556E-07 1.3021E-08 6.2679E-10 3.3103E-11 

𝜀 =1/100 8.4771E-04 5.2696E-05 1.3459E-06 3.7924E-08 1.0859E-09 3.0996E-11 

𝜀 =1/1000 8.4320E-03 5.2635E-04 1.2767E-05 3.8824E-07 9.7772E-09 3.5053E-10 

𝜀 =1/10000 8.4309E-02 5.2623E-03 1.2712E-04 3.8995E-06 9.7036E-08 3.4861E-09 

Reff [3] 𝑁 =5 𝑁 =6 𝑁 =7 𝑁 =8 𝑁 =9 𝑁 =10 

𝜀 =1/10 1.9640E−3 1.0855E−4 8.6060E−6 1.1654E−7 1.2083E−9 2.3913E−10 

𝜀 =1/100 4.3049E−2 1.5669E−3 1.3818E−4 2.0306E−6 3.8459E−8 1.5497E−8 

𝜀 =1/1000 4.7793E−1 7.1433E−2 1.1717E−2 1.9467E−4 2.2718E−6 1.2584E−7 

𝜀 =1/10000 4.8544 9.8674E−1 1.6973E−1 1.1336E−2 8.2980E−5 5.1276E−6 

Reff[13] 𝑁 =5 𝑁 =6 𝑁 =7 𝑁 =8 𝑁 =9  

𝜀 =1/10 9.6181E−4 1.8000E−5 1.5525E−6 1.2692E−5 6.8182E−9  

𝜀 =1/100 6.0181E−3 2.2000E−4 1.1333E−5 1.1429E−7 8.5000E−8  

𝜀 =1/1000 6.3998E−2 2.1500E−3 1.1365E−4 1.3333E−6 9.2500E−7  

𝜀 =1/10000 6.5455E−1 2.1500E−2 1.1500E−3 1.3429E−5 9.0000E−6  
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Figure 1. Approximate solutions of Example. 1 obtained with 𝑁 = 6corresponding to i, 𝜀 = 1/10, ii, 𝜀 =
1/100, iii, 𝜀 = 1/1000 and iv, 𝜀 = 1/10000. 

 

 
Table 2 Comparison the AE for example 1, with 𝑁 = 10 and 𝜀 = 10−1, across various values of 𝜏. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Example 2. Next, we will address the problem that was already analyzed in references [3, 4]. 

                                   𝑢𝜏 − 𝜀𝑢𝜍𝜍 + (2 − 𝜍
2)𝑢𝜍 + 𝜍𝑢 = 10𝜏

2𝑒−𝜏𝜍(1 − 𝜍), 𝜍, 𝜏 ∈ [0,1].              (21) 

Both the initial as well as the boundary conditions could be given by: 

𝑢(𝜍, 0) = 0, 𝜍 ∈ [0,1],

𝑢(0, 𝜏) = 𝑢(1, 𝜏) = 0, 𝜏 ∈ [0,1].
                                        (22) 

Since the exact solution of this problem is not known, the residual function 𝑅𝑁(𝜍, 𝜏) to assess the accuracy 

of the approximate solutions will be utilized. Example 2 is the one to which the present scheme has been 

applied. In Fig. 2 illustrates the residual functions of the approximate solutions obtained with different 𝑁values 

and for 𝜀 = 2−4. 

Furthermore, In figure 3, we have implemented the current technique on Example 2 using 𝑁 = 8and the 

singular perturbation parameter values of  𝜀 = 2, 4, 6, and 8. However, the data in table 3 demonstrate that the 

i  𝜏 = 0.1 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.9 

0.1 9.4378E-

05 

1.6155E-

04 

1.2113E-

04 

3.3651E-

04 

0.2 1.1199E-

06 

1.7145E-

04 

3.1997E-

05 

2.9740E-

04 

0.3 3.4494E-

05 

1.6925E-

04 

6.8859E-

05 

2.2835E-

04 

0.4 3.4143E-

05 

1.4561E-

04 

1.3862E-

04 

1.6038E-

04 

0.5 2.2180E-

05 

9.5216E-

05 

1.5400E-

04 

8.7212E-

05 

0.6 7.4082E-

06 

3.3329E-

05 

1.2800E-

04 

1.4748E-

05 

0.7 1.8610E-

05 

7.8109E-

06 

1.0204E-

04 

2.6218E-

05 

0.8 6.4979E-

05 

4.9280E-

06 

1.1082E-

04 

7.9679E-

06 

0.9 1.0471E-

04 

5.7055E-

06 

1.1704E-

04 

2.1253E-

05 

i ii 

iii iv 
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current strategy produces outcomes that are similar to the other ways stated for this specific case. Finally, Table 

4 presents the AE for example 2, considering different values of 𝜏, 𝑁 = 7, and 𝜀 = 2−2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. The residual functions of the approximate solutions for example 2, derived for A with N=6, B with N=10, and C 

with N=14, correspond to the selected perturbation parameter 𝜀 = 2−4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Approximate solutions of Example 2 obtained with N=8 corresponding to i, 𝜀 = 1/4, ii, 𝜀 = 1/16, iii, 𝜀 = 1/64 and 

𝜀 = 1/256.  
 

TABLE 3. Comparison of the 𝐿2error of the absolute error function |𝑒𝑁(𝜍, 𝜏)|for various values of 𝑁and  𝜀in Example 2            

𝜀 2−2 2−4 2−6 2−8 

PM N=3 0. 

15940E-3 

0. 

17052E-3 

0. 

17252E-3 

0. 

17377E-3 

N=4 0. 

46406E-4 

0. 

82402E-4 

0. 

10558E-3 

0. 

11430E-3 

Reff 

[3] 

N=3 0. 

1071E−3 

0. 

3357E−3 

0. 

8856E−3 

0. 

5429E−3 

N=4 0. 

2723E−4 

0. 

2630E−3 

0. 

6464E−3 

0. 

4001E−3 

Reff 

[2] 

N=3 0. 

1791E−3 

0. 

2454E−3 

0. 

4272E−3 

0. 

2909E−3 

N=4 0. 

1090E−4 

0. 

1141E−3 

0. 

1187E−3 

0. 

8395E−2 

Reff 

[29] 

N=16 0. 

2030E−3 

0. 

2810E−3 

0. 

3048E−2 

0. 

8395E−2 

N=32 0. 

1113E−3 

0. 

1857E−3 

0. 

1275E−2 

0. 

4648E−2 

Reff 

[30] 

N=16 0. 26E−04 0. 115E−3 0.225E−3 0. 152E−3 

N=32 0. 

9921E−5 

0. 51E−4 0. 167E−3 0. 144E−3 

Reff 

[31] 

N=3 0. 

1124E−3 

0. 

1678E−3 

0. 

3090E−3 

0. 

3574E−3 

N=4 0. 

6320E−4 

0. 

8104E−4 

0. 

1522E−3 

0. 

1934E−3 
 

A 

B C 

i 
ii 

iii iv 
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Table 4. Comparison the AE for example 2 at 𝑁 = 7, 𝜀 = 2−2. 

𝜍𝑖 𝜏 = 0.1 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.9 

0.1 1.8775E-05 2.9553E-05 2.3824E-05 2.7127E-04 

0.2 5.3067E-05 6.3429E-05 2.0241E-05 6.2175E-04 

0.3 1.4144E-05 2.1355E-05 3.7880E-05 1.9695E-04 

0.4 6.7517E-05 5.0091E-05 2.3373E-05 5.5325E-04 

0.5 6.9006E-05 3.4627E-05 7.4278E-05 4.6528E-04 

0.6 2.8147E-05 4.3531E-05 6.4821E-06 3.2309E-04 

0.7 1.0545E-04 6.8340E-05 1.2288E-04 6.9734E-04 

0.8 2.2380E-05 1.0176E-05 6.5462E-05 2.7561E-05 

0.9 1.2731E-04 5.6492E-05 2.0063E-04 6.9274E-04 

 

 

6. Conclusions 

This work presents a collocation technique that is built upon the Said-Ball approach. The method is 

designed to numerically solve convection-diffusion equations of parabolic type, which are often encountered 

in several engineering fields. The primary characteristic of the work being given is the need to solve an 

algebraic system of equations at each individual time step, as opposed to solving a global system produced in 

Said-Ball collocation techniques. The accuracy and efficiency of the suggested technique are shown by 

numerical tests, which are described in figures and tables. These results are compared with existing published 

schemes. The suggested approach can be expanded to include the fractional solutions of the singularly 

perturbed parabolic convection-diffusion equation. 
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 The Internet of Things (IoT) is a network of connected devices designed to 

perform specific tasks. Many IoT devices are lightweight, meaning they have 

limited storage and processing power. Because of these limitations, 

centralized authentication systems are often used to manage security and 

access control. Unfortunately, such systems suffer from limitations like single 

points of failure, scalability issues, cost constraints, and bottlenecks. To 

overcome these limitations, decentralized systems involving public and 

private blockchains have emerged. This research evaluates the performance 

of an authentication system on private (Ganache) and public (Rinkeby and 

Ropsten) blockchains. Ganache, is an Ethereum emulation tool that facilitates 

testing in private blockchains, while Rinkeby and Ropsten represent public 

blockchains. The evaluation metrics employed in this research are execution 

time, CPU usage, and memory utilization, which play a significant role in 

group membership association requests and data exchanges. The findings 

indicate that private blockchains exhibit lower time and CPU usage due to 

their relatively smaller number of users, whereas public blockchains 

demonstrate lower memory consumption in comparison. 
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  الخلاصة 

مجموعة من الأجهزة المترابطة التي تهدف إلى تحقيق مهام محددة. تمتلك أجهزة إنترنت الأشياء الخفيفة قدرة تخزين    يإنترنت الأشياء ه

دة،  ومعالجة محدودة، مما يؤدي إلى اعتماد أنظمة التوثيق المركزية. ومع ذلك، فإن هذه الأنظمة تعاني من بعض القيود مثل نقاط الفشل الواح

شين العام والخاص.  تلقيود المالية، والاختناقات. للتغلب على هذه القيود، ظهرت الأنظمة اللامركزية التي تشمل البلوكومشاكل في التوسع، وا

 Rinkeby and)  رينكبي وروبستن( والعامة  Ganache)  جاناش  شين الخاصةتتقوم هذه الدراسة بتقييم أداء نظام التوثيق على شبكات البلوك

Ropsten  .)إيثريوممحاكاة  أداة    يه  جاناش  (Ethereum)  شين الخاصة، بينما تمثل رينكبي وروبستن شبكات  تتسهل الاختبار في شبكات البلوك

شين العامة. تتضمن مقاييس التقييم المستخدمة في هذه الدراسة وقت التنفيذ، واستخدام وحدة المعالجة المركزية، واستهلاك الذاكرة،  ت البلوك

البلوك أن شبكات  إلى  النتائج  تشير  البيانات.  وتبادل  الجماعية  العضوية  ارتباط  في طلبات  كبيرًا  دورًا  تلعب  الخاصة  توالتي  وقتاً    تبينشين 

 .شين العامة استهلاكًا أقل للذاكرةت واستخدامًا أقل لوحدة المعالجة المركزية بسبب عدد المستخدمين الأصغر نسبياً، في حين تظهر شبكات البلوك

 

1. INTRODUCTION 

Internet of Things (IoT) is a network sensors and devices that are able to share and capture data with 

each other and connect together over a network [1]. One of the significant challenges preventing the widespread 

adoption of IoT technologies is the concerns relating to privacy and security. The evolution of IoT devices 

creates a new model of facilities, but at the same time it makes some security weaknesses [2]. In the time before 

the invention of blockchain technology, a majority of online activities were carried out through centralized 

servers to insure data integrity and confidentiality.  

Blockchain is a decentralized database of transactions. Every user on the blockchain network 

maintains an authentic copy of the database. So, it is hard to add a malicious transaction because it must be 
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verified by all network users. A consensus mechanism ensures that all participants in a blockchain network 

agree on its contents. The most commonly used methods include Proof of Work (PoW), Proof of Stake (PoS), 

and Proof of Authority (PoA). They differ in their work style [3]. Proof of work is used by most cryptocurrency 

networks like Bitcoin and Litecoin. Users must prove the work to add new blocks to the blockchain. Although 

the mining process needs high energy consumption and processing time, proof of stake is another common one 

with a lower cost and lower energy consumption compared to the proof of work [4], where it depends on 

financial stake. Proof of work and proof of stake allow for open participation, allowing anyone to join and 

participate in their respective networks. However, this open participation does not exist in the proof of authority 

where it restricts the role of validator to trusted entities based on their trustworthiness [5].  

There are three types of blockchains public, private, and federated. The public blockchains is open for 

all types of users to share in the network. It can be secured using crypto-economics, which is a combination of 

cryptographic verification and economic incentives using consensus mechanisms such as proof of work or proof 

of stake. Ethereum and Bitcoin, are examples of this type [6]. In private blockchains only a specific set of users 

has the authority to join the blockchain network. Users of this type get their permission from the organization 

before joining to the blockchain network. Ripple and Everledger are examples of this type [7]. The private 

blockchain is easier than public blockchain because the number of users is less compared to the public blockchain. 

Also, it offers better privacy as only users identified within the blockchain network can read the transactions [8]. 

The federated blockchain is a partially private blockchain. It runs under the authority of a set of organizations. So, 

it is a private blockchain for a specific set of organizations and it is faster and offer better scalability and privacy 

than a public blockchain [9].  

Securing network communications is essential requirement, and one of the key measures to achieve this 

requirement is by properly identify devices through authentication and authorization. However, with the rapid 

expansion of IoT devices worldwide, traditional centralized authentication methods are becoming less effective. 

These methods create a single point of failure and bottlenecks, which slow down the authentication process. 

Studies [7, 11-13] have shown that using a single centralized server for authentication can lead to system 

vulnerabilities due to this single point of failure. On the other hand, there exists a decentralized authentication 

approach in the form of blockchain, which can be classified into two types: public blockchain and private 

blockchain. In public blockchain each transaction takes 14 seconds to be validated. Therefore, public blockchain 

is not adapted to real-time applications where the long validation time is not appropriate [14].  The private 

blockchain uses less power and time and is more secure than the public blockchain due to the network's authority 

where users being chosen [15, 16].  

This research aims to evaluate the efficacy of an authentication method in public and private blockchains, 

specifically Rinkeby, Ropsten, and Ganache. The study investigates and compare the performance differences 

among these blockchains in terms of time, CPU usage, and memory consumption. This study is an extension of 

our previous work [24], where we primarily investigated the performance of the authentication method in public 

blockchains using the mentioned metrics. To the best of our knowledge, no prior studies have evaluated the 

performance of the public and private blockchains in context of authentication process of IoTs  

 

 

2. RELATED WORK 

Explaining research chronological, including research design, research procedure (in the form of 

Authentication is the process of verifying the identity of an individual by comparing his/her credentials against 

stored data in a database in an authentication server [17]. This process can be conducted without utilizing 

blockchain technology or can leverage the capabilities of a blockchain for authentication purposes. This section 

presents a literature review of previous studies conducted on the topic of authentication methods. The review 

is organized into two parts: authentication methods that do not utilize blockchain technology, and 

authentication methods that leverage blockchains.  

 

 

2.1. AUTHENTICATION METHODS WITHOUT BLOCKCHAIN 

Satapathy et al. [17] proposed an Internet of Things authentication method that runs on a standard Wi-

Fi network and uses elliptic curve cryptography (ECC) to authenticate Internet of Things devices. The method 

assigns the Wi-Fi gateway to initialize system configuration and to authenticate Internet of Things devices. 

User's access in the method is controlled by mobile device using an Android application. However, the 

proposed method has the issue of using a public key, which is not effective in storage and computation for 

Internet of Things constrained devices. Zhang et al. [7] proposed a proximity-based authentication method 

between the smart phone and the Internet of Things devices. The RSS signal variation and RSS-trace are used 

to match the variations with the real ones. The issue with the proximity-based authentication is that the 

authentication data is stored on a centralized local server, resulting in a single point of failure attack. Moreover, 

the system requires the devices to be close enough if they want to authenticate each other. 
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2.2. AUTHENTICATION METHODS UTILIZING BLOCKCHAIN 

Dorri et al. [18] proposed a lightweight, private, secure blockchain. The method uses three interrelated 

blockchains: private blockchain for each use case, shared private blockchain and public blockchain. It resolves 

the identification issue, but it has several drawbacks. Firstly, each operation produces at least eight messages, 

which reduces the speed of the entire system. Secondly, private blockchains are centralized, which conflicts to 

their principle because it limits their availability. Griggs et al. [19] proposed utilizing private blockchain to 

simplify secure analysis and manage a medical sensor. The system resolves many security weaknesses related 

to distant patient monitoring and mechanizes the transfer of announcements to all involved parties in health 

insurance portability and accountability. The proposed system has some drawbacks when more smart devices 

broadcast their transactions to several nodes waiting to confirm the next block. This is not appropriate with the 

healthcare system because it deals with real-time data. Fayad et al. in [20]. Proposed a new authentication and 

authorization method for IoT gateways, using both private and public blockchains. This method aims to 

overcome the bottleneck problem of centralized methods caused by the rapid increase in IoT devices while 

maitains scalable security. Private blockchain saves money over public blockchain because it does not require 

transaction fees. Focusing on the scalability issues in blockchain-based IoT, authors in [25] introduced a 

lightweight, trust-aware authentication mechanism designed to minimize storage overhead. By combining data 

storage optimization with homomorphic encryption for secure cloud uploading, the framework effectively 

balances high-performance requirements with robust security for resource-constrained devices. To eliminate 

the expense of digital certificates in massive IoT networks, authors in [26] introduced a blockchain-based 

security scheme that functions as a decentralized alternative to Certificate Authorities. This approach prioritizes 

confidentiality and authorization through a low-cost, methodological framework capable of managing the 

registration and authentication of widely distributed smart devices. Recognizing the limitations of Proof of 

Work in resource-constrained environments, authors in [27] proposed a lightweight blockchain system utilizing 

a simplified Proof of Stake (PoS) consensus and hierarchical topology. By employing efficient cryptography 

(ECDSA and AES-128), the framework achieved a 54% reduction in energy consumption and maintained sub-

30ms latency, offering a viable alternative to traditional centralized or heavy-duty blockchain solutions. Hammi 

et al. [14] proposed bubbles of trust authentication method. It was executed using a public blockchain and 

creates secured bubbles (groups) where devices can communicate only inside each group and can't 

communicate outside. The method has some issues. Firstly, it is not suitable for real-time applications because 

it is time consuming method due to the use of public blockchain and the transaction in Ethereum is confirmed 

every 14 seconds (consensus needed time). Thus, transactions (messages) sent by devices will be authenticated 

only after this time. Secondly, there are various situations on the Internet of Things where this time is not 

accepted. However, the problem will be solved if a private blockchain is used. 
 

 

3. RESEARCH METHODOLOGY  

This section outlines the research methodology used in this study. The main objective is to evaluate 

the performance of an authentication method in secure groups within an IoT environment, where each group 

represents a specific application. The concept of the authentication method and secure groups is inspired by 

the work in [14], where an IoT group is referred to as a "bubble." In this approach, each IoT device 

communicates only with members of its own group and treats all other devices as potentially malicious. This 

ensures that the group remains secure and inaccessible to unauthorized devices. 

The authentication method consists of two phases: the association phase and the data exchange phase. 

The association phase begins when a device attempts to join a specific group, while the data exchange phase 

starts when two members within the same group want to communicate. In this method, there are two types of 

entities: the master and the follower. The master is responsible for creating a group. When a follower wants to 

join, the master first verifies its credentials before granting permission. These credentials include three key 

values: GroupID, which identifies the group; ObjectID, which identifies the follower; and PublicAddress, 

which represents the follower’s public address. 

To join a group, the follower sends its credential values to the master using a Python socket. The 

master then signs the combined credential values using Node.js to generate a follower ticket on the blockchain. 

This ticket is verified using the Elliptic curve digital signature algorithm. If the ticket is valid, the follower 

becomes a member of the group. However, if the follower tries to join a group that does not exist the transaction 

will be canceled. 

Figure 1 illustrates a dual-environment authentication framework where a Node.js backend issues 

signed tickets to followers for on-chain verification. The process utilizes ECDSA (ecrecover) within a 

blockchain environment to validate the "Association" and "Exchange" transactions against a Master public key. 

As shown in the figure, the architecture is implemented across both public blockchain infrastructures (using 

MetaMask and Rinkeby/Ropsten) and private blockchain (using Ganache and Injected Web3), with a Python 

Socket facilitating the communication layer between the components. 
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Figure1: Authentication Method Framework 

 

3.1. EVALUATION OF THE AUTHENTICATION METHOD 

To evaluate the authentication method in public blockchain, two simulators were used, Rinkeby and 

Ropsten. The Rinkeby is a test network that uses a Proof of Authority consensus method to validate 

transactions. The Ropsten is a test network that uses a Proof of Work consensus method to validate transactions. 

The authentication method was tested using the Remix online editor with a Web3 provider environment to 

connect to a MetaMask wallet. The Rinkeby test network was selected, and the smart contract was deployed to 

it. On the Ropsten test network, the same MetaMask account was used, but test ethers were obtained by simply 

pressing the request button within the MetaMask account. After getting the ethers, the test network is changed 

to Ropsten. Finally, the same smart contract is deployed to Ropsten test network [21].  

To evaluate the authentication method within private blockchain. The execution of the authentication 

method, along with the testing of distributed applications and smart contracts, are carried out using Ganache 

simulation. The authentication method is tested in Remix online editor with Injected Web3 environment to 

start a Ganache process. Ganache minimizes] cost associated with deploying smart contracts. When you want 

to deploy a smart contract on the Ethereum chain, you need to pay a gas fee for testing purposes. However, 

Ganache provides a solution by eliminating this cost and allowing testing smart contracts for free [22].  

The construction of any group in the blockchain is made by the master of that group. The master 

triggers a transaction with its identifier and group identifier. The blockchain checks the uniqueness of both the 

group identifier and master identifier. There are two types of transactions that are performed by followers: 

association request transaction and data exchange transaction. In the association request transaction, if a 

follower wants to be a member of a specific group it sends a transaction, then the blockchain validates the 

uniqueness of the follower’s identifier, and checks the legitimacy of the follower’s ticket using the public key 

of the group master. If one of the conditions is not satisfied, the object cannot be a member of the group. The 

data exchange transaction is done by the members of any group, so a follower's ticket will not be verified 

because the members have already authenticated in the association request transaction. 

 

  

3.2. EXPERIMENTAL SETUP 

To evaluate the authentication method for time, CPU usage, and memory consumption, two physical 

devices are used. Since the authentication method has two types of entities (master and follower), the setup 

includes two laptops. The first laptop runs a virtual machine that acts as the master, while the second laptop 

has two virtual machines acting as followers. One follower runs Raspberry Pi OS (Buster version), and the 

other runs Ubuntu 21.04. The follower applications are developed using Python to send their credentials 

(GroupID, ObjectID, and PublicAddress) to the master, which then signs a ticket for authentication, Table 1 

shows the specifications of the used virtual machines. 
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Table 1: Virtual Machine Specifications. 
Virtual Machine CPU Operation Mode CPU Max Speed RAM Operating system 

Master  64-bits 1.80 GHz 8.00 GB Ubuntu 21.04 

Follower 1  64-bits 1.80 GHz 4.00 GB Ubuntu 21.04 

Follower 2  32-bits 1.80 GHz 4.00 GB Raspberry Pi OS (buster) 

 

Rinkeby and Ropsten were used as a public blockchains and Ganache was used as a private 

blockchain. The smart contract that satisfies the authentication is deployed using Solidity language [23]. This 

study focuses on 20 investigations [24] that are conducted to evaluate the performance. The performance of 

the authentication method in the public and private blockchains is evaluated against the following performance 

metrics: 

1. Time required to send an association request or data exchange and receive a response, which is a 

critical metric, especially for Internet of Things devices with limited storage and processing capacity. 

Minimizing the time consumption is crucial to optimize the performance of these devices. 

2. CPU usage involved in sending an association request or data exchange and receiving a response. 

Minimizing CPU usage is ideal for Internet of Things devices with limited storage and processing 

capacity as it enhances device efficiency. 

3. Memory consumption during the transmission of an association request or data exchange and 

receiving a response. Minimizing memory consumption is crucial for Internet of Things devices with 

limited storage and processing capacity, as it ensures efficient resource utilization. 

 

 

4. RESULTS AND DISCUSSIONS  

This paper evaluates the performance of an authentication method using two public blockchains and 

one private blockchain. This section presents the findings from the experimental results related to time, CPU 

usage, and memory consumption for the both types the evaluated blockchains.  

 

 

4.1. TIME CONSUMPTION 

Table 2, displays the average time in seconds and the corresponding standard deviation for association 

requests and data exchange. This metric is calculated based on 20 conducted experiments, providing a 

comprehensive overview of the performance metrics associated with these experiments. The analysis of Table 

2 reveals that Ganache exhibits lower average time values and standard deviations compared to Rinkeby and 

Ropsten for both association requests and data exchange. This happens because Ganache has fewer participants 

in the network, resulting in faster consensus reaching. Furthermore, Ganache does not employ Proof of Work 

as its consensus algorithm, which eliminates the computational overhead associated with the Proof of Work 

method. In contrast, Rinkeby and Ropsten utilize Proof of Work, which involves extensive computation, hence 

leading to longer processing time. Additionally, Rinkeby and Ropsten operates as a public blockchains, 

accessible to a wide range of participants, which can further contribute to increased delays.  

. 

Table 2: Time Consumption. 

Device Type 

Association request time in seconds Message exchange time in seconds 

Ganache Rinkeby Ropsten Ganache Rinkeby Ropsten 

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD 

Raspberry PI 1.30 0.00 19.55 3.47 29.00 19.97 1.30 0.00 13.25 3.71 28.00 19.21 

Laptop 1.30 0.00 19.07 4.06 29.00 19.97 1.30 0.00 13.55 3.71 28.00 19.21 

 

 

4.2. CPU USAGE  

Table 3, presents the average CPU usage in seconds and the corresponding standard deviation for 

association requests and data exchange. This metric is calculated based on 20 conducted experiments, 

providing insights into the CPU usage. The results of Table 3 indicates that Ganache exhibits lower average 

CPU usage values and standard deviations compared to Rinkeby and Ropsten for both association requests and 

data exchange. This lower average is because the distinct nature of the private and public blockchains in terms 

of resource consumption. Rinkeby and Ropsten, being public blockchains, require substantial resources to 

operate and achieve network consensus. This increased resource demand contributes to higher CPU usage. 

Additionally, these public blockchains employ Proof of Work as their consensus algorithm, which involves 

solving complex mathematical puzzles. Additionally, the computational requirements of Proof of Work further 

contribute to the higher CPU consumption observed in Rinkeby and Ropsten. On the other hand, Ganache 

operates as a private blockchain limited to users within a specific organization. This user limitation base and 

the absence of Proof of Work as the consensus algorithm result in lower CPU usage. 
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Table 3: CPU Usage. 

Device Type 

Association request CPU usage in seconds Message exchange CPU usage in seconds 

Ganache Rinkeby Ropsten Ganache Rinkeby Ropsten 

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD 

Raspberry PI 8.70 2.31 9.20 4.81 15.75 10.03 7.90 2.31 8.35 4.32 11.05 5.71 

Laptop 8.50 2.67 8.85 4.66 9.70 5.65 7.30 2.11 8.45 4.97 8.80 5.70 

 

4.3. MEMORY CONSUMPTION 

Table 4, presents the average memory usage in kilobytes and the standard deviation for association 

requests and data exchange. This metric is calculated based on 20 conducted experiments. From Table 4 it is 

clear that Rinkeby and Ropsten has a lower memory value in average and standard deviation compared with 

Ganache in association requests and data exchange. This result is because Ganache is an Ethereum application, 

so during its running, it consumes more memory storage, but the interaction with Rinkeby and Ropsten is done 

using a web page that redirects to https://etherscan.io/. 

 

Table 4: Memory Consumption. 

Device Type 

Association request memory in Kbytes Message exchange memory in Kbytes 

Ganache Rinkeby Ropsten Ganache Rinkeby Ropsten 

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD 

Raspberry PI 15.00 2.51 11.60 1.31 16.30 1.18 12.70 2.54 9.35 1.31 14.60 2.37 

Laptop 15.50 2.87 13.15 1.18 14.05 1.15 13.50 2.80 10.90 1.29 12.05 1.15 

 

5. CONCLUSION 
With the rapid spread of IoT devices and their inherent capability to communicate without human 

intervention, ensuring the safety and security of such communication becomes important. In this research, a 

performance evaluation was conducted to assess the effectiveness of an authentication method in one private 

and two public blockchains. The evaluation covered scenarios where IoT devices were associated with their 

groups and exchanged data with each other. 

Based on the obtained results, it is evident that the private blockchain had lower time and CPU usage 

compared to the public blockchains. This was because the use of a limited number of users in the private 

blockchain, whereas the public blockchains are open to anyone, leading to increased number of users. However, 

the public blockchains demonstrated lower memory consumption compared to the private blockchain. This can 

be caused by the nature of public blockchains, which allow for the acceptance of a larger number of participants 

while efficiently managing memory resources. In the context of authentication for IoT applications, blockchain 

proves to be superior to centralized authentication methods by eliminating a single point of failure. However, 

it is important to consider the specific requirements of the IoT application. For real-time IoT applications where 

timing is critical, a private blockchain is recommended due to its lower time consumption. Conversely, if timing 

is less critical for the IoT application, a public blockchain can be chosen, as it offers the advantage of 

accommodating the growth number of users. The future work will involve executing a testbed to evaluate at 

least two IoT applications, each representing an IoT group. One of these applications focuses on real-time 

functionality, while the other has no strict real-time requirements. By conducting this testbed execution, we 

aim to evaluate the performance of the authentication method in different blockchain environments, 

specifically in the context of IoT applications. 
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